Light scattering by the dielectric cylinder including 2-d grating of metallic nanowires
D.V. Nesterenko, V.V. Kotlyar

Image Processing Systems Institute of the RAS,
Samara State Aerospace University

Full text of article: Russian language.

The propagation of transverse magnetic (TM) and transverse electric (TE) polarized light in two-dimensional silver-nanorod arrays of various radii and concentration in dielectric structures is studied. Accurate numerical results are compared with results estimated by a nonlocal model of the homogeneous environment for periodic arrays of rods with negative dielectric permittivity. Strong influence of multipole light scattering is shown that can’t be regarded as relevant for the considered model.

Key words:
dielectric cylinder, silver-nanorod arrays, negative dielectric permittivity, multipole light scattering.

Citation: Nesterenko DV, Kotlyar VV. Light scattering in a dielectric cylinder consisting of metallic nanorod arrays [In Russian]. Computer Optics 2008; 32(1): 23-28.


  1. Abeles F, Borensztein Y, Lopez-Rios T. Optical properties of discontinuous thin films and rough surfaces of silver. Advances in solid state physics. Braunschweig: Vieweg 1984; 24: 93-117.
  2. Taleb A, Russier V, Courty A, Pileni MP. Collective optical properties of silver nanoparticles organized in two-dimensional superlattices. Phys. Rev. B 1999; 59(20): 13350-13358.
  3. Yannopapas V, Modinos A, Stefanou N. Scattering and absorption of light by periodic and nearly periodic metallodielectric structures. Opt. Q. Electr. 2002; 34(1-3): 227-234.
  4. Zhang WY, Lei XY, Wang ZL, Zheng DG, Tam WY, Chan CT, Sheng P. Robust photonic band gap from tunable scatterers. Phys. Rev. Lett. 2000; 84(13): 2853-2856.
  5. Maxwell-Garnett JC. Colours in metal glasses and in metallic films. Philos. Trans. R. Soc. London Ser. A 1904; 203: 385-420.
  6. Sukhov SV. Nanocomposite material with the unit refractive index.  Quantum Electronics 2005; 35(8): 741-744.
  7. Rahachou AI, Zozoulenko IV. Light propagation in nanorod arrays. J. Opt. A: Pure Appl. Opt. 2007; 9: 265-270.
  8. Silveirinha MG. Nonlocal homogenization model for a periodic array of ε-negative rods. Phys. Rev. E 2006; 73: 046612.
  9. Silveirinha MG, Belov PA, Simovski CR. Subwavelength imaging at infrared frequencies using an array of metallic nanorods. Phys. Rev. B 2007; 75: 035108.
  10. Nesterenko DV, Kotlyar VV. Analysis of light diffraction on cylindrical micro-optical elements using Galerkin finite element method [In Russian]. Computer Optics 2007; 31(2): 9-15.
  11. Ahsanulhaq Q, Kim JH, Hahn YB. Controlled selective growth of ZnO nanorod arrays and their field emission properties. Nanotechnology 2007; 18(40): 485307.
  12. Yang J, Liu TW, Hsu CW, Chen LC, Chen KH, Chen CC. Controlled growth of aluminium nitride nanorod arrays via chemical vapour deposition. Nanotechnology 2006; 17(11): 321-326.
  13. Kelly K, Coronado E, Zhao L, Schatz G. The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment. J. Phys. Chem. B 2003; 107: 668-677.
  14. Quidant R, Leveque G, Weeber J-C, Dereux A, Girard C, Weiner J. Frustrated energy transport through microwaveguides decorated by gold nanoparticle chains. Europhys. Lett. 2004; 66(6): 785-791.

© 2009, ИСОИ РАН
Россия, 443001, Самара, ул. Молодогвардейская, 151; электронная почта: ; тел: +7 (846) 332-56-22, факс: +7 (846 2) 332-56-20