Simulation of sidewall-angle effects on radiation focusing by high-numerical-aperture cylindric microlenses
D.L. Golovashkin, E.N. Kashaikina, Yu.O. Orekhova

Image Processing Systems Institute of the RAS,
Samara State Aerospace University

Full text of article: Russian language.

The paper is aimed at study of sidewall-angle effects on radiation focusing by diffractive microlenses with wavelength aperture 16 and numerical aperture 0.71. The sidewall-angle cases typical for liquid-chemical and plasma-chemical technologies are considered.

Key words:
diffractive microlens, wavelength aperture, numerical aperture, Finite-Difference Time-Domain method.

Citation: Golovashkin DL, Kashaikina EN, Orekhova YuO. Simulation of sidewall-angle effects on radiation focusing by high-numerical-aperture cylindric microlenses [In Russian]. Computer Optics 2008; 32(1): 47-49.


  1. Pavelyev VS. Fundamental properties of eigensubspaces of the operator of light propagation in a lenslike medium for solving computer optics problems [In Russian]. Computer Optics 2002; 24: 58-61.
  2. Borodin SA, Volkov AV, Kazanskiy NL, Karpeev SV, Moiseev OYu, Pavelyev VS, Yakunenkova DM, Runkov YuA, Golovashkin DL. Fabrication and characterization of a frontend diffractive microrelief in a halogenide IR waveguide [In Russian]. Computer Optics 2005; 27: 45-49.
  3. Volkov AV, Skidanov RV. Diffraction of light by diffractive lenses: numerical investigation [In Russian]. Herald of Samara State Technical University. Series: Physical and Mathematical Science 2000; 9: 174-183.
  4. Skidanov RV, Khonina SN. How processing errors and broadening of the emission line of a laser affect the operating quality of diffractive optical elements. Journal of Optical Technology 2004; 71(7): 469-471.
  5. Doskolovich LL, Tyavin YeV. Designing binary diffraction gratings with etching wedge areas [In Russian]. Computer Optics 2005; 27: 17- 20.
  6. Golovashkin DL, Duparre M, Pavelyev VS, Soifer VA. Simulation of IR radiation passing through a diamond diffractive lens with microrelief subwavelength processing errors [In Russian]. Computer Optics 2001; 21: 131-133.
  7. Golovashkin DL.  Analysis of radiation propagation through DOE fragments with microrelief technological errors [In Russian]. Proceedings of Samara Scientific Center of the RAS 2002; 4(1): 68-72.
  8. Taflove A, Hagness S. Computational Electrodynamics: The Finite-Difference Time-Domain Method: 2nd. ed. - Boston: Arthech House Publishers 2000; 852 p.
  9. Yee KS. Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media. IEEE Trans Antennas Propag 1966; AP-14: 302-307.
  10. Golovashkin DL.  Formulation of the radiation condition for modeling the cylindrical doe operation using a finite difference solution of Maxwell's equations [In Russian]. Mathematical Modeling 2007; 19(3): 3-14.
  11. Golovashkin DL, Kazanskiy NL. Method of differential solution of Maxwell’s equations [In Russian]. Handbook. Samara State Aerospace University 2007; 160 p.
  12. Butikov YeI. Optics: Handbook for university-level students in physics [In Russian]. St. Petersburg: “Nevsky Dialect” Publisher 2003; 480 p.
  13. Methods of Computer Optics / 2nd ed. (rev.) by V.A. Soifer [In Russian].  Moscow: “Fizmatlit” Publisher 2003; 688 p.

© 2009, ИСОИ РАН
Россия, 443001, Самара, ул. Молодогвардейская, 151; электронная почта: ; тел: +7 (846) 332-56-22, факс: +7 (846 2) 332-56-20