Calculating the modes in photonic crystal fiber using fimmwave software
Y.O. Shuyupova, V.V. Kotlyar

Image Processing Systems Institute of the RAS,
Samara State Aerospace University

Full text of article: Russian language.

Results received for effective mode index using new finite-difference method and commercial software product FIMMWAVE for fundamental mode of photonic crystal fiber with solid core are shown to be coincident up to 0,2%. Implementation of new film mode matching method in Matlab gives faster and more monotonic convergence with less deviation at small number of 1D modes than commercial software product FIMMWAVE.

Key words:
photonic crystal fiber, fiber modes, numerical methods of calculating fiber modes.


  1. Knight JC, Birks TA, Russel PSJ, and Atkin DM. All-silica single mode optical fiber with photonic crystal cladding. Opt Lett, 1996, 21(19): 1547-49.
  2. Adams MJ. An Introduction to Optical Waveguides. New York: John Wiley & Sons, Inc; 1981.
  3. Yeh P, Yariv A, and Marom E. Theory of Bragg fiber. J Opt Soc Am 1978, 68(9): 1196-201.
  4. Ibanescu M, Fink Y, Fan S, Thomas EL, and Joannopoulos JD. All-dielectric coaxial waveguide. Science, 2000, 289: 415-9.
  5. Cojocaru E. Dispersion analysis of hollow-core modes in ultralarge-bandwith all-silica Bragg fibers, with nanosupports. Appl Opt, 2006, 45(9): 2039–45.
  6. Foroni M, Passaro D, Poli F, Cucinotta A, Selleri S, Laegsgaard J, and Bjarklev A. Confinement loss spectral behavior in hollowcore Bragg fiber. Opt Lett, 2007, 32(21): 3164–6.
  7. Zhelticov AM. Ray-optic analysis of the (bio)sensing ability of ring-cladding hollow waveguides. Appl Opt, 2008, 47(3): 474-9.
  8. Dupuis A, Guo N, Gauvreau B, Hassani A, Pone E, Boismenu F, and Skorobogatiy M. Guiding in the visible with “colorful” solidcore Bragg fiber. Opt Lett, 2007, 32(19): 2882-4.
  9. Fang Q, Wang Z, Jin L, Liu J, Yue Ya, Liu Ya, Kai G, Yuan S, and Dong X. Despersion design of all-solid photonic bandgap fiber. J Opt Soc Am A, 2007, 24(11): 2899-905.
  10. Ren G, Shum P, Zhang L, Yu X, Tong W, and Luo J. Low-loss all-solid photonic bangap fiber. Opt Lett, 2007, 32(9): 1023-5.
  11. Yang R, Xue W, Huang T, Zhou G. Research of the effects of air hole shape on the properties of microstructured optical fibers. Opt Eng, 2004, 43(11): 2701-6.
  12. Yue Y, Kai G, Wang Z, Sun T, Jin L., Lu Yu, Zhang C, Liu J, Li Ya, Liu Ya, Yuan S, and Dong X. Highly birefringent elliptical-hole photonic crystal fiber with squeezed hexagonal lattice. Opt Lett, 2007, 32(5): 469-71.
  13. Choi H-G, Kee C-S, Hong K-H, Sung JH, Kim S, Ko D-K, Kim J-Eu, and Park HYo. Discpersion and birefringence of irregularly microstructured fiber with elliptical core. Appl Opt, 2007, 46(35): 8493-8.
  14. Mafi A and Moloney JV. Shaping Modes in Multicore Photonic Crystal Fiber. IEEE Photonics Tech Lett, 2005, 17(2): 348-50.
  15. Michaille L, Taylor DM, Bennett CR, Shepherd T.J, and Ward BG. Characteristics of a Q-switched multicore photonic crystal fiber laser with a very large mode field area. Opt Lett, 2008, 33(1): 71-3.
  16. Szpulak M, Statkiewicz G, Olszewski J, Martynkien T, Urbaczyk W, Wojcik J, Makara M, Klomek J, Nasilowski T, Berghmans F, and Thienpont H. Experimental and theoretical investigations of birefringent holey fibers with a triple defect. Appl Opt, 2005, 44(13): 2652-8.
  17. Eguchi M, Tsuji Y. Geometrical birefringence in square-lattice holey fibers having a core consisting of multiple defect. J Opt Soc Am A, 2007, 24(4): 750-5.
  18. Zhang C, Kai G, Wang Z, Sun T, Wang C, Liu Ya, Liu J, Zhang W, Yuan S, and Dong X. Design of tunable bandgap guidance in highindex filled microstructure fibers. J Opt Soc Am A, 2006, 23(4): 782-6.
  19. Sun J, Chan CC, Dong XYo Refractive index measurement using photonic crystal fiber. Opt Eng, 2007, 46(1): 014402.
  20. Sun J, Chan CC. Hybrid guiding in liquid-crystal photonic crystal fibers. J Opt Soc Am A, 2007, 24(10): 2640-6.
  21. Larsen TT, Bjarklev A, Hermann DS, Broeng J. Optical devices based on liquid crystal photonic bandgap fibres. Opt Express, 2003, 11(20), 2589-96.
  22. Haakestad MW, Alkeskjold TT, Nielsen MD, Scolari L, Riishede J, Engan HE, Bjarklev A. Electrically tunable photonic bandgap guidance in a liquid-crystal-filled photonic crystal fiber. IEEE Photon Technol Lett, 2005, 17(4): 819-21.
  23. Domachuk P, Nguyen HC, Eggleton BJ Transverse probed microfluidic switchable photonic crystal fiber devices. Photon Technol Lett, 2004, 16(8): 1900-2.
  24. Yablonovitch E. Inhibited Spontaneous Emission in Solid-State Physics and Electronics. Phys Rev Lett, 1987, 58: 2059-62.
  25. Wynne RM. A Fabrication Process for Microstructured Optical Fibers. J Lightwave Tech, 2006, 24(11): 4304-13.
  26. Lui J, Xue L, Wang Y, Kai G, and Dong X. Impacts of imperfect geometry structure on the nonlinear and chromatic dispersion properties of microstructure fiber. Appl Opt, 2007, 46(31):  7771-5.
  27. Zghal M., Cherif R. Impact of small geometrical imperfections on chromatic dispersion and birefringence in photonic crystal fiber. Opt Eng, 2007, 46(12): 128002.
  28. Birks TA, Knight JC, Russell PSJ. Endlessly single-mode photonic crystal fiber. Opt Lett, 1997, . 22(13): 961-3.
  29. Mogilevtsev D, Birks TA, Russell PSJ. Group-velocity dispersion in photonic crystal fibers. Opt Lett, 1998, 23(21): 1662-4.
  30. Monro T.M. Richardson DJ, Broderick NGR, and Bennett PJ. Modeling Large Air Fraction Holey Optical Fiber. J Opt Tech, 2000, 18(1): 50-6.
  31. Broderick NGR, Monro TM, Bennett PJ, and Richardson DJ. Nonlinearity in holey optical fibers: measurement and future opportunities. Opt Lett, 1999, 24(20): 1395-7.
  32. Ferrando A, Silvestre E, Miret JJ, Andres P, and Andres MV. Full-vector analysis of a realistic photonic crystal fiber. Opt Lett, 1999, 24(5): 276-8.
  33. Ferrando A, Silvestre E, Miret JJ, and Andres P. Nearly zero ultraflattened dispersion in photonic crystal fibers. Opt Lett, 2000, 25(11): 790-2.
  34. Moester M, Steinmeyer G, Illiew R, Lederer, and Petermann K, Analitical relation between effective mode field area and waveguide dispersion in microstructure fibers. Opt Lett, 2006, 31(22): 3249-51.
  35. Zhang L, Luo T, Yue Ya, Yu C, and Willner E.A. Photosensitivity-enabled dispersion controllability for quasi-phase-matching in photonic crystal fibers. Opt Lett, 2007, 32(24): 3498-500.
  36. Riishede J. and Sigmund O. Inverse design of dispersion compensating optical fiber using topology optimization. J Opt Soc Am B, 2008, 25(1): 88-97.
  37. Zhelticov AM. Let there be white light: supercontinuum generation by ultrashort laser pulses. Uspekhi Fizicheskikh Nauk, 2006, 176(6): 623-49.
  38. Knight JC, Birks TA, Gregan RF, Russell PStJ, de Sandro J-P. Large mode area photonic crystal fiber. Electron Lett, 1998, 34(13): 1347-8.
  39. Hasegawa A. Optical solitons in fibers. Berlin:, Springer Berlin Heidelberg; 1990.
  40. Fedotov AB, Sidorov-Birukov DA, Ivanov AA, Alfimov MV, Zhelticov AM. Hollow-core Photonic-crystal Fibres for a Soliton Transmission of Megawatt Femtosecond Pulses. Nanotechnologies of Russia, 2007, 2(3-4): 134-9.
  41. Zhelticov AM. Microstructure optical fibres for a new generation of fibre-optic sources and converters of light pulses Uspekhi Fizicheskikh Nauk, 2007, 177(7): 738-62.
  42. Xu Y. and Yariv A. Loss analysis of air-core photonic crystal fibers. Opt Lett, 2003, 28(20): 1885-7.
  43. Bogdanovich DV. Minimization of losses and calculation of the optical properties of Bragg fiber waveguides with a hollow core. JETP Letters, 2007, 86(4): 265-9.
  44. Pavlova EG. The mechanism of losses in photonic crystal fibers. Lightwave Russian Edition, 2005, 3: 54-6.
  45. Saito K. Mortensen NA, and Koshiba M. Air-core photonic bang-gap fibers: the impact of surface modes. Opt Express, 2004, 12(3): 394-400.
  46. Kim HK, Shin J, Fan S, Digonnet MJF, Kino GS. Designing air-core photonic-bandgap fibers free of surface modes. IEEE J. of Quantum Electronics, 2004, 40(5): 551-6.
  47. Digonnet MJF, Kim HK, Shin J, Fan S, and Kino GS, Simple geometric criterion to predict the existence of surface modes in air-core photonicbandgap fiber. Opt. Express, 2004, 12(9): 1864-72.
  48. Sakai J. Optical loss estimation in a Bragg fiber. J Opt Soc Am A, 2007, 24(4): 763-72.
  49. Momeni B, and Adibi A. An Approximate Effective Index Model for Efficient Analysis and Control of Beam Propagation Effects in Photonic Crystals. J. Lightwave Technology, 2005, 23(3): 1522-32.
  50. Park KN, and Lee KS Improved effective-index method for analysis of photonic crystal fibers. Opt Lett, 2005, 30(9): 958-60.
  51. Li Y, Yao Yu, Hu M, Chai L, and Wang C. Improved fully vectorial effective index method for photonic crystal fibers: evaluation and enhancement. Appl Opt, 2008, 47(3): 399-406.
  52. White TP, Kuhlmey BT, McPhedran RC, Maystre D, Renversez G, de Sterke CM, and Botten LC. Multipole method for microstructured optical fibers. I Formulation. J Opt Soc Am A, 2002, 19(10): 2322-30.
  53. Steel MJ, White TP, de Sterke CM, McPhedran RC, and Botten LC, Symmetry and degeneracy in microstructured optical fibers. Opt Lett, 2001, 26(8): 488-90.
  54. Yamashita E, Ozeki S, and Atsuki K. Modal analysis method for optical fibers with symmetrically distributed multiple cores. J Lighhtwave Techn, 1985, 3(2): 341-6.
  55. Felbacq D, Tayed G, and Maystre D, Scattering by a random set of parallel cylinders. J Opt Soc Am A, 1994, 11(9): 2526-38.
  56. Sudbo, A.S. Film mode matching: A versatile numerical method for vector mode field calculations in dielectric waveguides. Pure Appl Opt, 1993, 2: 211-33.
  57. Cucinotta A, Selleri S, Vincetti L, Zoboli M.. Holey fiber analysis through the finite element method. IEEE Photon Technol Lett, 2002, 14(11): 1530-2.
  58. Brechet F, Marcou J, Pagnoux D, Roy P. Complete analysis of the characteristics of propagation into photonic crystal fibers by the finite element method. Opt Fiber Technol, 2000, 6(2): 181-91.
  59. Guan N, Habu S, Takenaga K, Himeno K, and Wada A. Boundary Element Method for Analysis of Holey Optical Fibers. J Lightwave Technol, 2003, 21(8): 1787-92.
  60. Cheng H, Crtchfield WY, Doery M, and Greengard L. Fast, accurate integral equation methods for the analysis of photonic crystal fibers I: Theory. Opt Express, 2004, 12(16): 3791- 805.
  61. Riishede J, Mortensen NS and Legsgaard J. A ”Poor Man’s Approach” to Modeling Micro-Structured Optical Fibers. J Opt A: Pure Appl Opt, 2003, 5: 534-8.
  62. Hardley GR  and Smith RE. Full-vector waveguide modeling using an iterative finite-difference method with transparent boundary conditions. J Lightwave Technol, 1994, 13(3): 465-9.
  63. Zhu Z and Brown TG. Full-vectorial finite-difference analysis of microstructured optical fibers. Opt Express, 2002, 10(17): 853-64.
  64. Jiang W, Shen L, Chen D, and Chi H. An Extended FDTD Method With Inclusion of Material Dispersion for the Full-Vectorial Analysis of Photonic Crystal Fibers. J Lightwave Technol, 2006, 24(11): 4417-23.
  65. Xu CL, Huang WP, Stern MS, Chaudhuri SK Full-vectorial mode calculations by finite difference method. Inst Elec Eng, Proc-J, 1994, 141(5): 281-6.
  66. Huang W, Xu C, Chu S-T, Chaudhuri SK. The finite-difference vector beam propagation method. Analysis and Assessment. J Lightwave Technol, 1992, 10(3): 295-305.
  67. Xu CL. Efficient and accurate vector mode calculations by beam propagation method. J Lightwave Technol, 1993, 11(9): 1209-15.
  68. Itoh T. Numerical techniques for microwave and millimeterwave passive structures. New York: John Wiley & Sons, Inc; 1988.
  69. Sorrentino R, and Mongiardo M. Transverse resonance techniques. M: John Wiley & Sons, Inc; 2005.
  70.  Schlosser W. and Unger HG. Partially filled waveguides and surface waveguides of rectangular cross section. New York: Advances in Microwaves - Academic; 1966.
  71. Peng ST, and Oliner AA. Guidance and leakage properties of a class of open dielectric waveguides: Part I – Mathematical formulations. IEEE Trans Microwave Theory Techn, 1981, MTT-29, 843-55.
  72. Sudbo AS. Improved formulation of the film mode matching method for mode field calculations in dielectric waveguides. Pure Appl Opt, 1994, 3: 381-8.
  73. Pregla R. The method of lines. Chichester: John Wiley & Sons, Inc; 2008.
  74. Rogge U, and Pregla R. Method of lines for the analysis of dielectric waveguides. J Lighhtwave Techn, 1993, 11(12): 2015-20.
  75. Sudbo AS. Problems in vector mode calculations for dielectric waveguides. Linear and Nonlinear Integrated Optics, SPIE Europto Series Proceedings, 1994, 2212: 26-35.
  76. Dreher A, and Rother T. New Aspects of the Method of lines. IEEE Microw Guided Wave Lett, 1996, 5(11): 451-3.
  77. Sztefka G, and Nolting HP. Bidirectional eigenmode propagation for large refractive index steps. IEEE Photonic Technol Lett, 1993, 5(5): 554-7.
  78. Gerdes JJ. Bidirectional eigenmode propagation analysis of optical waveguides based on the method of lines. Electron Lett, 1994, 30(7): 550-1.
  79. Kotlyar VV, Shuyupova YO. Calculating the Modes in Microstructured Optical Fibers. Optical Memory & Neural Networks, 2004, 13: 27-36.
  80. Kotlyar VV, Shuyupova YO. Finding the propagation constants of the photonic waveguide modes by the Krylov's method. Computer optics, 2007, 31(1): 27-30.
  81. Kotlyar VV, Shuyupova YO. Comparison of the analytical and the numerical solutions calculated by finite-difference  method for a round fiber. Computer optics, 2005, 28: 41-4.
  82. Shuyupova YO. Comparison of two methods of calculating the spatial modes of waveguides on photonic crystals / Proceedings. Russian seminar on modeling diffractive optics and processing image, 2006, 9-11.
  83. Kotlyar VV, Shuyupova YO. Calculation of the photonic crystal fiber modes by difference method. Journal of Optical Technology, 2007, 74(9): 600-8.

© 2009, ИСОИ РАН
Россия, 443001, Самара, ул. Молодогвардейская, 151; электронная почта: ; тел: +7 (846) 332-56-22, факс: +7 (846 2) 332-56-20