Holography and speckle-interferometry methods of laser irradiation coherence properties investigations
Yu.N.Zakharov, A.N.Malov, A.Yu.Popov, A.V.Tyurin

Nizhni Novgorod Lobachevsky State University,
Irkutsk Higher Air Force Engineering School ,
Scientific-Research Institute of Physics of I.I.Mechnicov Odessa National University

Full text of article: Russian language.

Laser radiation coherence characteristics testing on-line method was designed for holographic and interferometric schemes and devices. These parameters monitoring puts into practice with the help of special test-objects by either holographic setup or ESPI.

Key words:
optical coherence, laser, holography, ESPI, visibility, contrast, interference, mode.


  1. Brytkov GA, Belyakov AV, Malov AN. Effect of the spectral instability of ruby laser double pulses on the holographic interferogram recording of dynamic strains. J Rus Laser Research 1996; 17( 2): 148-156.
  2. Zakharov YuN. Mode structure of semiconductor laser radiation: testing, control and applications. Physics of science intensive technology [In Russian]. Irkutsk: IVVAIIU; 2006: 108-19.
  3. Mandel VE, Popov AY, Popova EV, Tyurin AV, Shugailo YB. Determining the Parameters and Defect Level of Silicon-wafers Interferometrically. J Opt Tech 1995;  62(1): 55-8.
  4. Popov AYu,  Zhukovskyy VK, Gokhman SA. Phase modulated speckle interferometry method for in situ numerical evaluation of residual stresses in construction. Proc. SPIE 2006; 6254: 62541L1.
  5. Zakharov YuN. Application of semiconductor lasers in scientific and technical as well as pictorial holography. Proceedings and official materials of the conference “Holography in Russia and abroad. Theory and practice”. Moscow; 2007: 50-54.
  6. Bakut PA, Mandrosov VI. Estimate of the minimal coherence length of probe optical radiation in interferometry. Quantum Electronics 2007; 37(1): 81-4.
  7. Batrak DV, Bogatov AP. Output power of a ridge semiconductor laser in the single-frequency. Quantum Electronics 2007; 37(8): 745-52.
  8. Batrak DV et al. Modes of a semiconductor rectangular microcavity . Quantum Electronics 2008; 38(1):16 -22.
  9. Kitsak MA, Kitsak AI. Efficiency of nonstationary transformation of the spatial coherence of pulsed laser radiation in a multimode optical fibre upon self-phase modulation.  Quantum Electronics 2007; 37(8): 770 -4.
  10. M. Born, E. Wolf. Principles of Optics. New York: Pergamon Press; 1964.
  11. Mandel L., Wolf E. Optical Coherence and Quantum Optics. Cambridge: University Press; 1995.
  12. Perina J. Coherence of Light. . London: Van Nostrand Reinhold Company; 1972.
  13. Perina J. Quantum Statistics of Linear and Nonlinear Optical Phenomena. Dordreach/Boston /Lancaster: D.Reidel Publishing Company; 1984.
  14. Loudon R. The Quantum Theory of Light. Oxford: Claredon Press; 1973.
  15. Smintina VA, Tyurin OV, Popov AYu, Zhukovskyy VK. Substrate [In Ukraine]. Pat UA of Invent N7343, МКІ 7 G 01 В9/021. Bull of Inventions N6, 2005.
  16. Francon M. La Granularite Laser (Speckle) et ses Applications en Optique. Paris: Masson; 1978.

© 2009, ИСОИ РАН
Россия, 443001, Самара, ул. Молодогвардейская, 151; электронная почта: ko@smr.ru ; тел: +7 (846) 332-56-22, факс: +7 (846 2) 332-56-20