Investigation of focusing inhomogeneously polarized higher-order laser beams
S.V. Karpeev, S.N. Khonina, S.V. Alferov

Full text of article: Russian language.

Abstract:
We investigate focusing of laser beams with radial and azimuthal polarization formed by ear-lier developed optical system based on summation of two beams with circular polarization. Inves-tigation was spent by a method of confocal microscopy. The experiments have shown distinctions in focal intensity distributions for different types of the inhomogeneously polarized beams and as a whole are in agreement with results of the numerical modeling.

Key words:
inhomogeneously polarized beams, circular, radial and azimuthal polarization, higher-order cylindrical beams, confocal microscopy.

References:

  1. Khonina, S.N Polarization converter for higher-order laser beams using a single binary diffractive optical element as beam splitter / S.N. Khonina, S.V. Karpeev, S.V. Alferov // Opt. Lett. – 2012. – Vol. 37, N 13.
  2. Descrovi, E. Optical properties of microfabricated fully-metal-coated near-?eld probes in collection mode / E. Des­crovi // J. Opt. Soc. Am. A. – Vol. 22, N 7. – P. 1432.
  3. Dorn, R. Sharper focus for a radially polarized light beam / R. Dorn, S. Quabis and G. Leuchs // Phys. Rev. Lett. – 2003. – V. 91. – P. 233901.
  4. Kozawa, Y. Sharper focal spot formed by higher-order radially polarized laser beams / Y. Kozawa and S. Sato // J. Opt. Soc. Am. B. – 2007. – V. 24. – P. 1793.
  5. Lerman, G.M. Effect of radial polarization and apodization on spot size under tight focusing conditions / G.M. Lerman and V. Levy // Opt. Express. – 2008. – V. 16. – P. 4567.
  6. Khonina, S.N. Controlling the contribution of the electric ?eld components to the focus of a high-aperture lens using binary phase structures / S.N. Khonina, S.G. Volotovsky // J. Opt. Soc. Am. A. – 2010. – Vol. 27, N 10. – P. 2188-2197.
  7. Kozawa, Y. Dark spot formation by vector beams / Y. Kozawa and S. Sato // Opt. Lett. – 2008. – V. 33. – P. 2326.
  8. Tian, B. Tight focusing of a double-ring-shaped, azimuthally polarized beam / B. Tian and J. Pu // Opt. Lett. – 2011. – V. 36. – P. 2014-2016.
  9. Khonina, S.N. nalysis of wave aberration influence on reducing focal spot sizein a high-aperture focusing system / S.N. Khonina, A.V. Ustinov, E.A. Pelevina // Computer Optics. – 2011. – V. 35(2). – P. 203-219. – (In Russian).
  10. Richards, B. Electromagnetic diffraction in optical systems. II. Structure of the image ?eld in an aplanatic system / B. Richards and E. Wolf // Proc. Royal Soc. A. – 1959. – Vol. 253. – P. 358-379.
  11. Zhan, Q. Cylindrical vector beams: from mathematical concepts to applications / Q. Zhan // Advances in Optics and Photonics. – 2009. – Vol. 1. – P. 1-57.
  12. Khonina, S.N. Vortex phase transmission function as a factor to reduce the focal spot of high-aperture focusing system / S.N. Khonina, N.L. Kazanskiy, S.G. Volotovsky // Journal of Modern Optics. – 2011. – Vol. 58, N 9. – P. 748-760.
  13. Khonina, S.N. Enlightening darkness to dif fraction limit and beyond: comparison and optimization of different polarizations for dark spot generation / S.N. Khonina and I. Golub // J. Opt. Soc. Am. A – 2012. – Vol. 29, N 7. – P. 1470-1474.
  14. Hell, S.W. Breaking the diffraction resolution limit by stimulated-emission-depletion fluorescence microscopy / S.W. Hell and J. Wichmann // Opt. Lett. – 1994. – V. 19. – P. 780-782.

© 2009, IPSI RAS
Institution of Russian Academy of Sciences, Image Processing Systems Institute of RAS, Russia, 443001, Samara, Molodogvardeyskaya Street 151; E-mail: ko@smr.ru; Phones: +7 (846 2) 332-56-22, Fax: +7 (846 2) 332-56-20