Joint finite-difference solution of the dalamber and Maxwell’s equations. one-dimensional case
D.L. Golovashkin,  L.V. Yablokova

Full text of article: Russian language.

Abstract:
The technique of searching of the collateral finite-difference solution of a wave equation and set of equations of Maxwell is offered, allowing to combine advantage and to avoid shortcomings of both made mention numerical methods of nanophotonics. In an one-dimensional case on test examples convergence of such decision, possibility of imposing of PML layers and a task of an incident wave on the TF/SF technology are shown

Key words:
Delamber equation, Maxwell equation, difference scheme, PML layer, TF/SF technique.

References:

  1. Fidel, B. Hybrid ray-FDTD moving window approach to pulse propagation / B. Fidel, E. Heyman, R. Kastner and R.W. Zioklowski // Journal of Computational Physics. – 1997. – Vol. 138, Issue 2. – P. 480-500.
  2. Golovashkin, D.L. Mesh domain decomposition fdtd / D.L. Golovashkin, N.L. Kazanskiy // athematic modeling. – 2007. – Vol. 19, N 2 – P. 48-58. – (In Russian).
  3. Golovashkin, D.L. Solution of difference equations in graphical D.L. Golovashkin, A.V. Kochurov // Computing technologies. – 2012. – Vol 17, N 3. – P. 55-69. – (In Russian).computing devices. Method of pyramids /
  4. Kozlova, E.S. Model operation of distribution of a short twodimensional impulse of light / E.S. Kozlova, V.V. Kotlyar // Computer optics. – Vol. 36, N 2. – P. 158-164. – (In Russian).
  5. Astrakhantseva, M.A. Method of formation of the incident wave in a two-dimensional finite-difference solution of the wave equation / M.A. Astrakhantseva, D.L. Golo­vashkin, L.V. Yablokova // Proceedings of the Seventh All-Russian Scientific Conference with International Participation “Mathematical modeling and boundary problems”, Issue 2. – Samara, 2010. – P. 298-301.
  6. Yee, K.S. Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media / K.S. Yee. // IEEE Trans. Antennas Propag. – 1966. – AP-14. – P. 302-307.
  7. Taflove, A. Computational Electrodynamics: The Finite-Difference Time-Domain Method: 2nd. ed. / A. Taflove, S. Hagness // Boston: Arthech House Publishers, 2000. – 852 p.
  8. Nikolsky, V.V. Electrodynamics and radio waves propagation / V.V. Nikolsky, T.I. Nikolskaya. – Moscow: “Nauka” Publisher, 1999. – 544p. – (In Russian).
  9. Berenger, J.-P. A perfectly matched layer for the absorption of electromagnetic waves / Jean-Pierre Berenger // Journal of computational physics. – 1994. – Vol. 114. – P. 185-200.
  10. Mur, G. Absorbing boundary conditions for the finite-difference approximation of the time-domain electromagnetic field equations / G. Mur / IEEE Trans. Electromagnetic Compability. – 1981. – Vol. 23. – P. 377-382.
  11. Golovashkin, D.L. Technique of formation of the incident wave at the difference solution of Maxwell's equations (two-dimensional case) / D.L. Golovashkin, N.L. Kazanskiy // Journal “Avtometriya”. – 2007. – Vol. 43, N 6. – P. 78-88. – (In Russian).
  12. http://ab-initio.mit.edu/wiki/index.php/Meep .
  13. Umashankar, K. A novel method to analyze electromagnetic scattering of complex objects / K. Umashankar, A. Taflove // IEEE Trans. Electromagn. Compat. EMC-24, 1982. – P. 397-405.
  14. Prather, D.W. Formulation and application of the finite-difference time-domain method for the analysis of axially symmetric diffractive optical elements / D.W. Prather, S. Shi // J. Opt. Soc. Am. A. – 1999. – Vol. 16, N 5. – P. 1131-1142.
  15. Golovashkin, D.L. Technique of formation of the incident wave at the difference solution of Maxwell's equations. Dimensional case / D.L. Golovashkin, N.L. Kazanskiy // Journal “Avtomet­riya”. – 2006. – Vol. 42, N 6. – P. 78-85. – (In Russian).

© 2009, IPSI RAS
Institution of Russian Academy of Sciences, Image Processing Systems Institute of RAS, Russia, 443001, Samara, Molodogvardeyskaya Street 151; E-mail: ko@smr.ru; Phones: +7 (846 2) 332-56-22, Fax: +7 (846 2) 332-56-20