Resonant laser focus light by uniformity dielectric microcylinder
Kozlov D.A., Kotlyar V.V.

Image Processing Systems Institute, Russian Academy of Sciences,
Samara State Aerospace University

PDF, 348 kB

Full text of article: Russian language.

DOI: 10.18287/0134-2452-2014-38-3-393-396

Pages: 393-396.

In this paper we provide a numerically obtained result for analytical solution for the problem of monochromatic nonparaxial Gaussian beam diffraction by uniform dielectric cylinder, which yields a focal spot outside the cylinder with linear sizes twice less than the diffraction limit in the free space in case of cylinder radius comparable with the wavelength. Although the radius of cylinder is only two times larger than the wavelength, the produced intensity in focal spot is 48 times larger than the maximal intensity of incident Gaussian beam. Two percent deviation from the resonant radius (for a fixed wavelength) causes the focal spot increase in half, and the resulted intensity in focal spot drop to value of 12 times greater than the incident beam intensity. Obtained solution corresponds to the growth of the Bessel function of order 18 coefficient in E-field amplitude Bessel series expansion.

Key words:
photonic nanojet, dielectric micro-cylinder.


  1. Geints, Y.E.. Photonic nanojet calculations in layered radially in homogeneous micrometer-sized spherical particles / Y.E. Geints, A.A. Zemlyanov, E.K. Panina // Journal of the Optical Society of America B. – 2011. – V. 28(8). – P. 1825-1830.
  2. Han, L. Photonic jet generated by spheroidal particle with Gaussian-beam illumination / L. Han, Y. Han, G. Gouesbet, J. Wang, G. Grehan // Journal of the Optical Society of America B. – 2014. – V. 31(7). – P. 1476-1483.
  3. Grojo, D. Bessel-like photoic nanojets from core-shell sub-wavelength spheres / D. Grojo, N. Sandeau, L. Boarino, C. Constantinescu, N. De Leo, M. Laus, K. Sparnacci // Optics Letters. – 2014. – V. 39(13). – P. 3989-3992.
  4. Shen, Y. Ultralong photonic nanojet formed by a two-layer dielectric microsphere. / Y. Shen, L.V. Wang, J. Shen // Optics Letters. – 2014. . – V. 39(14). – P. 4120-4123.
  5. Liu, C. Photonic nanojet modulation by elliptical microcylinders / C. Liu, L. Chang // Optik. – 2014. – V. 125. – P. 4043-4046.
  6. Xu, B.B. Annual focusing lens based on transformation optics / B.B. Xu, W.X. Jiang, G.X. Yu, T.J. Cui // Journal of the Optical Society of America A. – 2014. – V. 31(5). – P. 1135-1140.
  7. Heifetz, A. Subdiffraction optical resolution of a gold nanosphere located within the nanojet of a Mie-resonant dielectric microshere / A. Heifetz, J.J. Simpson, S.C. Kong, A. Taflove V. Backman // Optics Express. – 2007. – V. 15(25). – P. 17334-17342.
  8. Geints, Y.E. Photonic jets from resonantly excited transparent dielectric microspheres / Y.E. Geints, A.A. Zem­lyanov, E.K. Panina // Journal of the Optical Society of America A. – 2012. – V. 29(4). – P. 758-762.
  9. Vaganov, V.R. Foundations of the diffraction thoery / V.R. Vaganov. – Moscow: “Nauka” Publisher, 1984. – P. 272 – (In Russian).
  10. Nalimov, A.G. Iterative solution of the two-dimensional diffraction problem and calculation of light force effect on microcylinder: PhD Thesis / Samara Space Aerospace University, 2006. – (In Russian).
  11. Watson, G.N. A treatise on the theory of Bessel functions / Watson G.N. – Moscow: "Foreign Literature Publisher", 1949. – 799 p. – (In Russian).

© 2009, IPSI RAS
151, Molodogvardeiskaya str., Samara, 443001, Russia; E-mail: ; Tel: +7 (846) 242-41-24 (Executive secretary), +7 (846) 332-56-22 (Issuing editor), Fax: +7 (846) 332-56-20