(39-2) 18 * << * >> *Russian * English * Content * All Issues

License plate recognition algorithm on the basis of a connected components method and a hierarchical temporal memory model
Yu.A. Bolotova, V.G. Spitsyn, M.N. Rudometkina


Tomsk Polytechnic University


DOI: 10.18287/0134-2452-2015-39-2-275-280

Full text of article: Russian language.


This paper proposes a license plate recognition algorithm that consists of three major steps: image preprocessing, segmentation, and recognition, which works efficiently with day- and nighttime images, as well as with the license plate being tilted.
Pre-filtration allows the sequential binarization to be conducted efficiently. Typically, the license plate segmentation is realized by a histogram method with the preliminary plate de-rotation to the horizontal position, thus deteriorating the original image quality. In this paper the segmentation is implemented by a connected components method, enabling the rotation and a consequent loss of quality to be avoided. The hierarchical temporal network shows good results in rotated symbols recognition. The proposed method can be used in a similar way for segmentation and recognition of various text data. The proposed algorithms can also be used for distorted text segmentation and recognition.

hierarchical temporal memory, temporal grouping, license plate detection.

Bolotova YA, Spitsyn VG, Rudometkina MN. License plate recognition algorithm on the basis of a connected components method and a hierarchical temporal memory model. Computer Optics 2015; 39(2): 275-280. DOI: 10.18287/0134-2452-2015-39-2-275-280.


  1. Jia, W.J. Region-based license plate detection / W.J. Jia, H.F. Zhang, X.J. He // Journal of Network and Computer Applications. – 2007. – Vol. 30(4). – P. 1324-1333.
  2. Zheng, L.H. Accuracy enhancement for license plate recognition / L.H. Zheng, X.J. He, B. Samali, L.T. Yang // Proceedings of the International Conference on Computer and Information Technology. – 2010. – P. 511-615.
  3. Han, C.C. License plate detection and recognition using a dual-camera module in a large space / C.C. Han, C.T. Hsieh, Y.N. Chen, G.F. Ho, K.C. Fan, C.L. Tsai // 41st Annual IEEE International Carnahan Conference on Security Technology. – 2007. – P. 307-312.
  4. Glumov, N.I. Method of rapid correlation using ternary templates for object recognition in images / N.I. Glumov, E.V. Mjasnikov, V.N. Kopenkov, M.A. Chicheva // Computer Optics. – 2008. – Vol. 32(3). – P. 277-282. – (In Russian).
  5. Caner, H. Efficient embedded neural network-based license plate recognition system / H. Caner, H.S. Gecim, A.Z. Alkar // IEEE Transactions on Vehicular Technology. – 2008. – Vol. 57(5). – P. 2675-2683.
  6. Park, S.H. Locating car license plate using neural networks / S.H. Park, K.I. Kim, K. Jung, H.J. Kim // Electronics Letters. – 1999. – Vol. 35(17). – P. 1475-1477.
  7. Otsu, N. A threshold selection method from gray-scale histogram / N. Otsu // IEEE Transactions on System, Man, and Cybernetics. – 1979. – P. 62-66.
  8. Sterganov, M. Methodology of allocation the connected components in binary barcode images / M. Sterganov // Proceedings 20th International Conference on Computer Graphics and Vision. – 2010. – P. 169-174. – (In Russian).
  9. Hawkins, J. Hierarchical temporal memory concepts, theory and terminology [Electronical Resource] / J. Hawkins, D. George. – URL: http://www.nimenta.com/htm-overvi­ew/education /Numenta_HTM_concepts.pdf (request date 19.11.2014).
  10. Bolotova, Yu.A. Analysis of hierarchically-temporal dependencies for handwritten symbols and gesture recognition / Yu.A. Bolotova, V.G. Spitsyn // Proceedings of 7-th International Forum on Strategic Technology (IFOST). – 2012. – P. 1-6.
  11. Shridhar, M. License plate recognition using SKIPSM / M. Shridhar, F.M. Waltz, J.W.V. Miller, G. Houle, L. Bij­nagte, R. Dibble // Proceedings of SPIE. The International society for Optical Engineering. – 2001. – Vol. 4189. – P. 72-79.
  12. Kennady, C.N. A feature based approach for license plate recognition of Indian number plates / C.N. Kennady, S.T. Subramanian, K. Parasuraman // IEEE International Conference on Computational Intelligence and Computing Research. – 2010. – P. 1-4.
  13. Dehshibi, M.M. Persian Vehicle License Plate Recognition Using Multiclass AdaBoost / M.M. Dehshibi, R. Allahverdi // International Journal of Computer & Electrical Engineering. – 2012. – Vol. 4(3). – P. 355.
  14. Chang, S.-L. Automatic license plate recognition / S.-L. Chang, L.-S. Chen, Y.-Ch. Chung, S.-W. Chen // IEEE Transactions on Intelligent Transportation Systems. – 2004. – Vol. 5(1). – P. 42-53.
  15. Sun, G. A new recognition method of vehicle license plate base on genetic neural network / G. Sun, C. Zhang, W. Zou, G. Yu // 5th IEEE Conference on Industrial Electronics and Applications. – 2010. – P. 1662-1666.

© 2009, IPSI RAS
151, Molodogvardeiskaya str., Samara, 443001, Russia; E-mail:journal@computeroptics.ru; Tel: +7 (846) 242-41-24 (Executive secretary), +7 (846) 332-56-22 (Issuing editor), Fax: +7 (846) 332-56-20