Conservation theorems for the orbital angular momentum of a superposition of shifted optical vortices
A.A. Kovalev, V.V. Kotlyar, D.S. Kalinkina


Image Processing Systems Institute, Russian Academy of Sciences,

Samara State Aerospace University

Full text of article: Russian language.


We proved two conservation theorems for the orbital angular momentum (OAM) of a superposition of identical optical vortices with an arbitrary radially symmetric shape, integer topological charge n, and arbitrary off-axis shift. The normalized OAM of such a superposition for any real weights equals the OAM of each individual beam contributing to the superposition. If the beam centers are located on a straight line passing through the origin, then, even if the superposition weights are complex, the normalized OAM of the whole superposition equals that of each contributing beam. These theorems allow of generating vortex laser beams with different (not necessarily radially symmetric) intensity distribution, but with the same OAM. The results of numerical simulation are given for superpositions of Bessel beams, Hankel-Bessel, Bessel-Gaussian and Laguerre-Gaussian beams.

orbital angular momentum, optical vortex, topological charge.

Kovalev AA, Kotlyar VV, Kalinkina DS. Conservation theorems for the orbital angular momentum of a superposition of shifted optical vortices. Computer Optics 2015; 39(3): 305-10. DOI: 10.18287/0134-2452-2015-39-3-305-310.


  1. Yao AM, Padgett MJ. Orbital angular momentum: origins, behavior and applications. Advances in Optics and Photonics 2011; 3: 161-204.
  2. Allen L, Beijersergen MW, Spreeuw RJC, Woerdman JP. Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes. Physical Review A 1992; 45: 8185-9.
  3. Barnett SM, Allen L. Orbital angular momentum and nonparaxial light-beams. Optics Communications 1994; 110: 670-8.
  4. Volke-Sepulveda K, Garces-Chavez V, Chavez-Cedra S, Arlt J, Dholakia K. Orbital angular momentum of a high-order Bessel light beam. Journal of Optics B: Quantum and Semiclassical Optics 2002; 4: S82-9.
  5. Litvin IA, Dudley A, Forbes A. Poynting vector and orbital angular momentum density of superpositions of Bessel beams. Optics Express 2011; 19(18): 16760-71.
  6. Kotlyar VV, Kovalev AA, Soifer VA. Asymmetric Bessel modes. Optics Letters 2014; 39(8): 2395-8.
  7. Kotlyar VV, Khonina SN, Soifer VA. An algorithm for the generation of laser beams with londitudinal periodicity: rotating images. Journal of Modern Optics 1997; 44(7): 1409-16.
  8. Paakkonen P, Lautanen J, Honkanen M, Kuittinen M, Turunen J, Khonina SN, Kotlyar VV, Soifer VA, Friberg AT. Rotating optical fields: experimental demonstration with diffractive optics. Journal of Modern Optics 1998; 45(11): 2355-69.
  9. Khonina SN, Kotlyar VV, Soifer VA, Lautanen J, Honkanen M, Turunen J. Generating a couple of rotating nondiffracting beams using a binary-phase DOE. Optik 1999; 110(3): 137-44.
  10. MacDonald MP, Paterson L, Volke-Sepulveda K, Arlt J, Sibbett W, Dholakia K. Creation and manipulation of three-dimensional optically trapped structures. Science 2002; 296: 1101-3.
  11. Courtial J, Zambrini R, Dennis M, Vasnetsov M. Angular momentum of optical vortex arrays. Optics Express 2006; 4: 938-49.
  12. Martinez-Castellanos I, Gutierrez-Vega J. Shaping optical beams with non-integer orbital angular momentum: a generalized differential operator approach. Optics Letters 2015; 40(8): 1764-7.
  13. Durnin J. Exact solution for nondiffractive beams. I. The scalar theory. Journal of the Optical Society of America A 1987; 4(4): 651-4.
  14. Kotlyar VV, Kovalev AA, Soifer VA. Hankel-Bessel laser beams. Journal of the Optical Society of America A 2012; 29(5): 741-7.
  15. Gori F, Guattari G, Padovani C. Bessel-Gauss beams. Optics Communications 1987; 64: 491-5.

© 2009, IPSI RAS
151, Molodogvardeiskaya str., Samara, 443001, Russia;; Tel: +7 (846) 242-41-24 (Executive secretary), +7 (846) 332-56-22 (Issuing editor), Fax: +7 (846) 332-56-20