Implementation of an algorithm for determining the spatial coordinates and the angular orientation of an object based on reference marks, using information from a single camera
I.A. Kudinov, O.V. Pavlov, I.S. Kholopov


Joint Stock Company Ryazan State Instrument-making Enterprise, Ryazan, Russia,
Ryazan State Radio Engineering University, Ryazan, Russia

Full text of article: Russian language.


An algorithm for determining the spatial coordinates and angular orientation of an object with reference emitters using a single calibrated camera is considered. The algorithm is based on a sequential solution of a perspective-four-point task and more precise definition of reference emitter’s spatial coordinates using the Levenberg – Marquardt optimization method. It is shown that while in the camera field of view there are four reference emitters with a priori known distances between them measured with up to 0.15 mm precision, it is possible to determine the angular orientation of the object in real time with an error less than 20 angular minutes.

camera calibration, distortion, PnP algorithms, Levenberg – Marquardt algorithm.

Kudinov IA, Pavlov OV, Kholopov IS. Implementation of an algorithm for determining the spatial coordinates and the angular orientation of an object based on reference marks, using information from a single camera. Computer Optics 2015; 39(3): 413-9. DOI: 10.18287/0134-2452-2015-39-3-413-419.


  1. Hartley R, Zisserman A. Multiple View Geometry in Computer Vision. Cambridge: Cambridge University Press, 2003.
  2. Maier D, Liu B, Yu M, Maenner R. An Efficient and Accurate Method for 3d-point Reconstruction from Multiple Views. International Journal of Computer Vision 2005; 65(3): 175-88.
  3. Rothwell C, Faugeras O, Csurka G. A Comparison of Projective Reconstruction Methods for Pairs of Views. Computer Vision and Image Understanding 1997; 68(1): 37-58.
  4. Pollefeys M, Nister D, Frahm J-M, Akbarzadeh A, Mordohai P, Clipp B, Engels C, Gallup D, Kim S-J, Merrell P, Salmi C, Sinha S, Talton B, Wang L, Yang Q, Stewenius H, Yang R, Welch G, Towles H. Detailed Real-Time Urban 3D Reconstruction From Video. International Journal of Computer Vision 2008; 78 (2-3): 143-67.
  5. Paragios N, Chen Y, Faugeras O. Handbook of Mathematical Models in Computer Vision. NY: Springer Science + Business Media; 2006.
  6. Gruzman IS, Kirichuk VS, Kosykh VP, Peretyagin GI, Spektor AA. Digital Image Processing in Information systems [In Russian]. Novosibirsk: NSTU Publisher; 2002.
  7. Goshin YeV, Fursov VA. Solving a Camera Autocalibration Problem with a Conformed Identification Method [In Russian]. Computer Optics 2012; 36(4): 605?10.
  8. Medioni G. Kang SB. Emerging Topics in Computer Vision. New Jersey: Prentice Hall; 2004.
  9. Hartley R. In Defence of the 8-point Algorithm. In: Proceedings of the 5th International Conference on Computer Vision: 1995 Jun 20-23; Cambridge, MA, 1995.
  10. Heikkilä J. Silvén O. A Four-Step Camera Calibration Procedure with Implicit Image Correction. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition: 1997 Jun 17-19; San Juan, 1997.
  11. Zhang Z. A Flexible New Technique for Camera Calibration. IEEE Transactions on Pattern Analysis and Machine Intelligence 2000; 22(11): 1330?4.
  12. Zhang Z. Flexible Camera Calibration by Viewing a Plane from Unknown Orientations. Proceedings of the 7th IEEE International Conference on Computer Vision. Vol. 1: 1999 Sep 20-27; Kerkyra, 1999.
  13. Tsai RY. A Versatile Camera Calibration Technique for High-Accuracy 3d Machine Vision Metrology Using Off-The-Shelf TV Cameras and Lenses. IEEE Journal on Robotics and Automation 1987; 3(4): 323-44.
  14. Levenberg K. A Method for the Solution of Certain Problems in Least Squares. Quarterly of Applied Mathematics 1944; 2: 164-8.
  15. Marquardt D. An Algorithm for Least-Squares Estimation of Nonlinear Parameters. SIAM Journal on Applied Mathematics 1963; 11: 431-41.
  16. More J. The Levenberg-Marquardt Algorithm: Implementation and Theory. Numerical Analysis. Lecture Notes in Mathematics. 1978; 630: 105-16.
  17. Faugeras O. Three-Dimensional Computer Vision: a Geometric Viewpoint. MIT Press; 1993.
  18. Lee GH, Fraundorfer F, Pollefeys M. RS-SLAM: RANSAC Sampling for Visual FastSLAM. IEEE/RSJ International Conference on Intelligent Robots and Systems: 2011 Sept 25-30; San Francisco, CA, 2011.
  19. Brown DC. Decentering Distortion of Lenses. Photogrammetric Engineering 1966; 5: 444-62.
  20. Zhimbueva LD. Method of Determining the Total Distortion Digital Images [In Russian]. Computer Optics 2011; 35(3): 347-55.
  21. Ma L, Chen Y, Moore KL. Flexible Camera Calibration Using a New Analytical Radial Undistortion Formula with Application to Mobile Robot Localization. Proceedings of Intelligent Control IEEE International Symposium: 2003 Oct 8; Houston, TX, 2003.
  22. Quan L, Lan Z. Linear N Point Camera Pose Determination. IEEE Trans. on Pattern Analysis and Machine Intelligence 1999; 21(8): 774?80.
  23. Quan L, Lan Z. Linear N³4-Point Pose Determination. 6th International Conference on Computer Vision: 1998 Jan 4-7; Bombay, 1998.
  24. Chou SC, Gao XS. Complete Solution Classification for the Perspective-Three-Point Problem. IEEE Trans. on Pattern Analysis and Machine Intelligence 2003; 25(8): 930-43.
  25. Haralick RM, Lee CN, Ottenberg K, Nolle M. Review and Analysis of Solutions of the Three Point Perspective Pose Estimation Problem. International Journal of Computer Vision 1994; 13(3): 331-56.
  26. Zeynalov RSh, Yakubenko AA, Konushin AS. Object Trajectory Estimation Using the Infrared Markers [In Russian]. Proceedings of the 14th International Conference on Digital Signal Processing and its Applications. Vol. 2: 2012 Mar 28-30; Moscow, 2012.
  27. Maths – Rotation Conversions. Source: á rotations/ conversions/ index.htmñ.

© 2009, IPSI RAS
151, Molodogvardeiskaya str., Samara, 443001, Russia;; Tel: +7 (846) 242-41-24 (Executive secretary), +7 (846) 332-56-22 (Issuing editor), Fax: +7 (846) 332-56-20