Design of a holographic combiner for a virtual display
G.I. Greisukh, E.G. Ezhov, S.V. Kazin, S.A. Stepanov


Penza State University of Architecture and Construction

Full text of article: Russian language.


Ways and methods of modeling and calculating a holographic combiner for a virtual display are presented.  On the one hand, they allow Denisyuk holograms with high diffraction efficiency independent of the field angle to be generated. On the other hand, they allow the advantages of the holographic combiner when compared with a multilayer dielectric mirror to be maximally realized. Optimization and search of the design parameters of elements of an optical setup for generating an aspherical wavefront for recording a Denisyuk hologram are based on ray tracing. These processes are greatly facilitated by the use of an intermediate model in the form of a thin transparency for phase delay. The phase delay of this transparency, the mirror geometry of the optical setup that forms the aspherical wavefront for recording the hologram, and the actual model of Denisyuk hologram in this article are described in the form adopted in the Zemax environment for surfaces such as Binary1, Extended polynomial and Optically Fabricated Hologram.

virtual display, holographic combiner, diffraction efficiency, monochromatic aberrations, freeform surface.

Greisukh GI, Ezhov EG, Kazin SV, Stepanov SA. Design of a holographic combiner for a virtual display. Computer Optics 2016; 40(2): 188-93. DOI: 10.18287/2412-6179-2016-40-2-188-193.


  1. Bakholdin AV, Vasil’ev VN, Grimm VA, Romanova GÉ, Smirnov SA. Virtual-display optical devices. Journal of Optical Technology 2013; 80(5): 274-278. DOI: 10.1364/JOT.80.00274.
  2. Kuzilin, JE, Pavlov AP, Tyutchev MV, Gan MA, Novoselskiy VV, Dustin VM, Kulikov AV. Holographic optical display system information. Patent RU 2057352, date of publication 27.03.1996.
  3. Gan MA, Shcheglov SA, Gan YaM, Chertkov AS. Wide-angle optical systems with a combiner based on synthesized volume holograms for helmet-mounted displays. Journal of Optical Technology 2008; 75(3): 151-155. DOI: 10.1364/JOT.75.000151.
  4. Gan MA, Barmicheva VG, Starkov AA, Shcheglov SA, Gan YaM. The optical system of the collimator helmet-mounted display. Patent RU 2353958 C1, date of publication 27.04.2009, bull. 12.
  5. Odinokov SB, Markin VV, Lushnikov DS, Kuznetsov SA, Solomchenko AB, Drozdova EA. Optical scheme for holographic display iconic-character information [In Russian]. Engineering journal: science and innovation 2012; 9. DOI: 10.18698/2308-6033-2012-9-362.
  6. Odinokov SB, Kuznetsov AS, Kolyuchkin VV, Drozdova EA, Solomashenko AB. Сombined holographic optical elements for multicolor holographic screens and indicator. Journal of Physics: Conference Series 2015; 584: 012024.
  7. Betin А, Donchenko S, Kovalev M, Odinokov S, Solomashenko A, Zlokazov E. A combination of computer-generated Fourier holograms and light guide substrates with diffractive optical elements for optical display and sighting system. Digital Holography & 3-D Imaging, Meeting, OSA Technical Digest 2015; DW2A.20.
  8. Odinokov SB, Zherdev AY, Kolyuchkin VV, Solomashenko AB. Combined holographic optical elements for character/symbol display devices. Computer optics 2014; 38(4): 704-709.
  9. Cakmakci O, Rolland J, Head-Worn Displays: A Review. Journal of display technology 2006; 2(3): 199-216.
  10. Kress B. Diffractive and holographic optics as combiners in Head Mounted Displays. Source: <>.
  11. Brotherton-Ratcliffe D. Analytical treatment of the polychromatic spatially multiplexed volume holographic grating. Applied Optics 2012; 51(30): 7188-7199. DOI: 10.1364/AO.51.007188.
  12. Gornostay AV, Odinokov SB. A method to design a diffractive laser beam splitter with color separation based on bichromated gelatin. Computer Optics 2016; 40(1): 45-50. DOI: 10.18287/2412-6179-2016-40-1- 45-50.
  13. Vuzix_Blade. Source: <>.
  14. Friesem AA, Amitai Ya. Method of production holograms particularly for holographic helmet displays. Patent US 4,998,786 A, Publish Date 12.03.1991.
  15. Greisukh GI, Ezhov EG, Stepanov SA. Composition and design of high-resolution optical systems with gradient and diffractive elements [In Russian]. Computer optics 2000; 20: 20-24.
  16. ZEMAX: software for optical system design. Source: <>.

© 2009, IPSI RAS
Institution of Russian Academy of Sciences, Image Processing Systems Institute of RAS, Russia, 443001, Samara, Molodogvardeyskaya Street 151; E-mail:; Phones: +7 (846) 332-56-22, Fax: +7 (846) 332-56-20