Implementation of an algorithm for forming a color image from monochrome images of visible and near infrared cameras in the YCbCr color space
I.S. Kholopov


Ryazan State Radio Engineering University, Ryazan, Russia,
Joint Stock Company Ryazan State Instrument-making Enterprise, Ryazan, Russia

Full text of article: Russian language.


We consider a simplified algorithm for fusion of greyscale visible and thermal images presented in false colors in the de-correlated YCbCr color space. The color gamut is then brought to daylight conditions using a color transfer algorithm that provides the same luminosity of the resulting gray fusion and color fusion images. It is shown that the parallel computing on the graphics card performs real-time video fusion with a frame size of up to 1024×768 pixels and a frame rate of 30 Hz.

RGB, HSI, YUV and YCbCr color spaces, infrared image, image fusion, false color, color transfer algorithm, histogram, and bilinear interpolation.

Kholopov IS. Implementation of an algorithm for forming a color image from monochrome images of visible and near infrared cameras in the YCbCr color space. Computer Optics 2016; 40(2): 266-74. DOI: 10.18287/2412-6179-2016-40-2-266-274.


  1. Kostyaskin LN, Babaev SI, Loginov AA, Pavlov OV. Technology of Improved. Synthesized Vision Systems to Aircraft Control. Proc of Technical Vision in the Control Systems of Mobile Objects: 2010 Mar 16-18; Tarusa, 2010.
  2. Zheng Y, Essock EA, Hansen BC. An Advanced Image Fusion Algorithm Based on Wavelet Transform – Incorporation with PCA and Morphological Processing. Proc SPIE 2004; 5298: 177-187.
  3. Das S, Krebs WK. Sensor Fusion of Multi-spectral Imagery. Institution of Electrical Engineers: Electronics Letters 2000; 36: 1115-1116.
  4. Wang W, Chang F. A Multi-focus Image Fusion Method Based on Laplacian Pyramid. Journal of Computers 2011; 6(12): 2559-2566.
  5. Anshakov GP, Raschupkin AV, Zhuravel YN. Hyperspectral and Multispectral Resurs-P Data Fusion for Increase of Their Informational Content. Computer Optics 2015; 39(1): 77-82.
  6. Zheng Y, ed. Image Fusion and Its Applications. Rijeka: InTech; 2011.
  7. Toet A, Hogervorst MA. Progress in Color Night Vision. Optical Engineering 2012; 51(1): 1-19.
  8. Shi S, Wang L, Jin W, Zhao Y. Color Night Vision Based on Color Transfer in YUV Color Space. Proc SPIE 2008; 6623: 66230B.
  9. Bogdanov AP, Kholopov IS. Algorithms of Color Fusion from Monochrome Multispectral Images Based on Color Conversion Methods [In Russian]. Digital Signal Processing 2013; 3: 26-32.
  10. Christinal JJ, Jebaseeli TJ. A Novel Color Image Fusion for Multi Sensor Night Vision Images. International Journal of Computer Applications Technology and Research 2013; 2(2): 155-159.
  11. Brown LG. A Survey of Image Registration Techniques. ACM Computing Surveys 1992; 24(4): 325-376.
  12. Parker JA, Kenyon RV, Troxel DE. Comparison of Interpolating Methods for Image Resampling. IEEE Trans on Medical Imaging 1983; MI-2(1): 31-39.
  13. Lu F, Zhuangzhi W, Xiang L. Fast Image Diffusion for Feature Detection and Description. International Journal of Computer Theory and Engineering 2015; 8(1): 58-62.
  14. Heather JP, Smith MI. Multimodal Image Registration with Applications to Image Fusion. Proc of 7th IEEE International Conference on Information Fusion 2005, Jul 25-28.
  15. Hui L, Manjunath BS, Mitra SK. A Contour-Based Approach to Multisensor Image Registration. IEEE Trans on Image Processing 1995; 4(3): 320-334.
  16. Oliveira FPM, Tavares JMRS. Matching Contours in Images Using Curvature Information and Optimization Based on Dynamic Programming. IEEE Latin America Trans 2009; 7(6): 703-712.
  17. Muratov ER, Nikiforov MB. Methods of Reducing the Computational Complexity of Combining Disparate Images [In Russian]. Cloud of Science 2014; 1(2): 327-336.
  18. Bhosle U, Roy SD, Chaudhuri S. Multispectral Panoramic Mosaicing. Pattern Recognition Letters 2005; 26(4): 471-482.
  19. Hines GD, Rahman Z, Jobson DJ, Woodell GA. Multi-Image Registration for an Enhanced Vision System. Proc SPIE 2003; 5108: 231-241.
  20. Zhang Z. A Flexible New Technique for Camera Calibration. IEEE Transactions on Pattern Analysis and Machine Intelligence 2000; 22(11): 1330-1334.
  21. Tsai RY. A Versatile Camera Calibration Technique for High-Accuracy 3D Machine Vision Metrology Using Off-The-Shelf TV Cameras and Lenses. IEEE Journal on Robotics and Automation 1987; 3(4): 323-344.
  22. Kovalenko VP, Veselov YuG, Karpikov IV. The Method of Distortion Estimation for Modern Infrared Systems [In Russian]. Vestnik MSTU of NE Bauman 2011; 1: 98-107.
  23. Goshin YeV, Fursov VA. 3D Scene Reconstruction from Stereo Images with Unknown Extrinsic Parameters. Computer Optics 2015; 39(5): 770-776.
  24. Muratov ER. The Construction of the Virtual Terrain Model Using Stereo Vision System [In Russian]. Proc of Technical Vision in Control Systems Conference, 2015, Mar 17-19. Moscow: ISR RAS; 2015.
  25. Hartley R, Zisserman A. Multiple View Geometry in Computer Vision. Cambridge: Cambridge University Press; 2003.
  26. Bogdanov AP, Romanov VYu, Romanov YuN. Visible and Infrared Image Fusion [In Russian]. Proceedings of the of the 11th Conference on Problems Transmission and Processing of Information in Networks and Telecommunications Systems, 2002, Mar 28-29. Ryazan; 2002.
  27. Drynkin VN, Falkov EYa, Tsareva TI. The Forming of the Composite Image in the Zonal Airborne Aerospace System [In Russian]. Proc Of Technical Vision in Control Systems Conference, 2012, Mar 14-16. Moscow: ISR RAS; 2012.
  28. Gonzalez RC, Woods RE. Digital Image Processing. Digital Signal Processing. 2nd edition. London: Pearson Education Ltd; 2001.
  29. Vizilter YuV, Zheltov SYu, Bondarenko AV, Ososkov MV, Morzhin AV. Image Processing and Analysis Tasks in Machine Vision: Lectures and workshops [In Russian]. Moscow: “Fizmatkniga” Publisher; 2010.
  30. Lloyd JM. Thermal Imaging Systems. NY: Springer Science + Business Media, LLC; 1975.
  31. Usamentiaga R, Venegas P, Guerediaga J, Vega L, Molleda J, Bulnes FG. Infrared Thermography for Temperature Measurement and Non-Destructive Testing. Sensors 2014; 14: 12305-12348.
  32. Tarasov VV, Torshina IP, Yakushenkov YuG. 3rd Generation Infrared Systems [In Russian]. Moscow: “Logos” Publisher; 2011.
  33. Reinhard E, Ashikhmin M, Gooch B, Shirley P. Color Transfer between Images. IEEE Computer Graphics and Applications 2001; 21: 34-41.
  34. Bogdanov AP, Pavlov OV, Kholopov IS. Improve the Performance of Algorithms for Form a Color Fusion Image from Multispectral Monochrome Sensors Signals [In Russian]. Digital Signal Processing 2013; 3: 33-37.
  35. Bogdanov AP, Pavlov OV, Kholopov IS. False Color Fusion Algorithms and Color Accent in the Problems of Combining Information from the Monochrome Multispectral Sensors of Vision Systems [In Russian]. Technical Vision 2014; 2: 49-54.
  36. Li G, Xu S, Zhao X. Fast Color-Transfer-Based Image Fusion Method for Merging Infrared and Visible Images. Proc SPIE 2010; 7710: 77100S.
  37. Kholopov IS. Detection of Signals in Radar Systems with the Adaptive Chaotic Pulse Clutters Recognition Algorithm [In Russian]. Vestnik RGRTU 2011; 36: 33-8.
  38. Color Fusion Results: Pictures for the Paper. Source:  áñ.
  39. Gruzman IS, Kirichuk VS, Kosykh VP, Peretyagin GI, Spektor AA. Digital Image Processing in Information systems [In Russian]. Novosibirsk: NSTU Publisher; 2002.
  40. Vizilter YuV, Gorbatsevich VS, Rubis AYu, Vygolov OV. Image Shape Matching Using Diffusion Morphology and Diffusion Correlation. Computer Optics 2015; 39(2): 265-274.
  41. Sanders J, Kandrot E. CUDA by Example. NY: Addison-Wesley; 2010.
  42. Lemeshko BYu, Chimitova EV. On the choice of the number of intervals in the criteria for the consent of chi-square test [In Russian]. Industrial laboratory. Materials diagnostics 2003; 69: 61-67.

© 2009, IPSI RAS
Institution of Russian Academy of Sciences, Image Processing Systems Institute of RAS, Russia, 443001, Samara, Molodogvardeyskaya Street 151; E-mail:; Phones: +7 (846) 332-56-22, Fax: +7 (846) 332-56-20