Peculiarities of spectral measurements of colored suspensions in thick-walled cuvettes
N.V. Nel’ubina, V.P. Pidgirny, O.N. Bulgakova, A.A. Zvekov, A.V. Kalenskii


Federal Research Center of Coal and Coal Chemistry SB RAS,

Kemerovo State University

Full text of article: Russian language.


The cuvette wall and sample thickness can significantly affect the results of spectral measurements of the suspension in a hardly predictable manner. We propose an approach to accounting for the cuvette wall thickness in the limiting case of thick walls and a thin sample layer when calculating the diffuse reflectance and transmittance using a one-dimensional radiative transport equation.   The comparison with the experimental results for a model colored suspension is made. It is shown that with the cuvette wall influence taken into account it becomes possible to account for the fact that the scattered light fails to fully fit within the integrating sphere. There is good agreement between the experimental and calculated spectra provided that the scattering anisotropy factor is predetermined in a wavelength range where the pigment used does not absorb light.

turbid media, chemical analysis, total internal reflection, integrating spheres, spectroscopy, and spherical harmonics.

Nel’ubina NV, Pidgirny VP, Bulgakova ON, Zvekov AA, Kalenskii AV. Peculiarities of spectral measurements of colored suspensions in thick-walled cuvettes. Computer Optics 2016; 40(4): 508-515. DOI: 10.18287/2412-6179-2016-40-4-508-515.


  1. Azharonok VV, Korochkin LS, Knyukshto VN. Influence of paper whiteness and luminescent background on visibility of security features on papers and documents. J Appl Spectr 2012; 79(2): 238-242. DOI: 10.1007/s10812-012-9589-z.
  2. Skytte J, Møller F, Abildgaard O, Dahl A, Larsen R. Discriminating Yogurt Microstructure Using Diffuse Reflectance Images. Appl Spectr 2015; 69(9): 1096-1105.
  3. Liu W, Liu Ch, Ma F, Lu X, Yang J, Zheng L. Online variety discrimination of rice seeds using multispectral imaging and chemometric methods. J Appl Spectr 2016; 82(6): 993-999. DOI: 10.1007/s10812-016-0217-1.
  4. Yushkov AN, Borzykh NV, Butenko AI. Evaluation of Resistance of Horticultural Plants to Destabilizing Effects Based on Analysis of Leaf Reflection Spectra. J Appl Spectr 2016; 83(2): 302-306. DOI: 10.1007/s10812-016-0286-1.
  5. Lisenko SA, Kugeiko MM. Rapid Analysis of Hemoglobins in Whole Blood by a Light Scattering Method. J Appl Spectr 2013; 80(3): 419-428. DOI: 10.1007/s10812-013-9783-7.
  6. Lisenko SA, Kugeiko MM. Method of the diffuse reflectance coefficient of the eye bottom calculation. J Appl Spectr 2016; 83(3): 419-429.
  7. Petruk VG, Ivanov AP, Kvaternyuk SM, Barunb VV. Spectrophotometric Method for Differentiation of Human Skin Melanoma. II. Diagnostic Characteristics. J Appl Spectr 2016; 83(2): 261-270. DOI: 10.1007/s10812-016-0279-0.
  8. Giraev KM, Ashurbekov NA, Lakhina MA. Optical absorption and scattering spectra of pathological stomach tissues. J Appl Spectr 2011. 78(1): 95-102. DOI: 10.1007/s10812-011-9430-0.
  9. Bashkatov AN, Genina EA, Kozintseva MD, Kochubei VI, Gorodkov SY, Tuchin VV. Optical properties of peritoneal biological tissues in the spectral range of 350–2500 nm. Opt Spectr 2016; 120(1): 1-8. DOI: 10.1134/S0030400X16010045.
  10. Bratchenko IA, Alonova MV, Myakinin OO, Moryatov AA, Kozlov SV, Zakharov VP. Hyperspectral visualization of skin pathologies in visible region. Computer Optics 2016; 40(2): 240-248. DOI: 10.18287/2412-6179-2016-40-2-240-248.
  11. Krainov AD, Mokeeva AM, Sergeeva EA, Agrba PD, Kirillin MY. Optical properties of mouse biotissues and their optical phantoms. Opt Spectr 2013; 115(2): 193-200. DOI: 10.1134/S0030400X13080122
  12. Johnson TJ, Bernacki BE, Redding RL, Su Y-F, Brauer CS, Myers TL, Stephan EG. Intensity-Value Corrections for Integrating Sphere Measurements of Solid Samples Measured Behind Glass. Appl Spectr 2014; 68(11): 1224-34.
  13. Prahl SA. Light transport in tissue. Ph.D. Thesis, Univ Texas at Austin, 1988. Source: <>.
  14. Zvekov AA, Kalenskii AV, Aduev BP, Ananyeva MV. Calculation of the Optical Properties of Pentaerythritol Tetranitrate–Cobalt Nanoparticle Composites. J Appl Spectr 2015; 82(2): 213-220. DOI: 10.1007/s10812-015-0088-x
  15. Zvekov AA, Kalenskii AV, Nikitin AP, Aduev BP. Radiance distribution simulation in a transparent medium with Fresnel boundaries containing aluminum nanoparticles. Computer Optics 2014; 38(4): 749-756.
  16. Zvekov AA, Kalenskii AV, Nikitin AP, Gazenaur NV. Optical Properties of Composites Based on a Transparent Matrix and Copper Nanoparticles. Russ Phys J 2016; 59(2): 263-272. DOI: 10.1007/s11182-016-0766-z.
  17. Kalenskii AV, Zvekov AA, Anan’eva MV, Zykov IYu, Kriger VG, Aduev BP. Influence of laser wavelength on the critical energy density for initiation of energetic materials. Combust Expl Shock Waves 2014; 50(3): 333-338. DOI: 10.1134/S0010508214030113.
  18. Ishimaru A. Wave Propagation and Scattering in Random Media. Wiley-IEEE Press; 1 edition, 1999.
  19. Edjlali E, Bérubé-Lauzière Y. Analytical solution of the simplified spherical harmonics equations in spherical turbid media. J Quant Spectr Rad Transfer 2016; 182: 112-118. DOI: 10.1016/j.jqsrt.2016.05.025.
  20. Machida M, Panasyuk GY, Schotland JC, Markel VA. The Green s function for the radiative transport equation in the slab geometry. J Phys A 2010; 43(6): 065402. DOI: 10.1088/1751-8113/43/6/065402.
  21. Aduev BP, Nurmukhametov DR, Belokurov GM, Zvekov AA, Kalenskii AV, Nikitin AP, Liskov IYu. Integrating sphere study of the optical properties of aluminum nanoparticles in tetranitropentaerytrite. Tech Phys 2014; 59(9): 1387-1392. DOI: 10.1134/S1063784214090023.
  22. Panasyuk GY, Schotland JC, Markel VA. Radiative transport equation in rotated reference frames. J Phys A 2006; 39(1): 115-137. 10.1088/0305-4470/39/1/009.
  23. Aduev BP, Nurmukhametov DR, Zvekov AA, Nikitin AP, Nelyubina NV, Belokurov GM, Kalenskii AV. Determining the optical properties of light-diffusing systems using a photometric sphere. Instr Exp Tech 2015; 58(6):765-770. DOI: 10.1134/S0020441215050012.
  24. Bashkatov AN, Genina EA, Kochubey VI, Gavrilova AA, Kapralov SV, Grishaev VA, Tuchin VV. Optical properties of human stomach mucosa in the spectral range from 400 to 2000 nm: prognosis for gastroenterology. Med Laser Appl 2007; 22: 95-104 DOI: 10.1016/j.mla.2007.07.003.
  25. Tuchin V. Tissue Optics: Light Scattering Methods and Instruments for Medical Diagnosis. SPIE Press Monograph Vol. PM166; 2 Edition, 2007.
  26. Bashkatov AN, Genina EA, Kochubey VI, Rubtsov VS, Kolesnikova EA, Tuchin VV. Optical properties of human colon tissues in the 350 – 2500 nm spectral range. Quantum Electronics 2014; 44(8): 779-784. DOI: 10.1070/QE2014v044n08ABEH015613.
  27. Bashkatov AN., Genina EA., Tuchin VV. Optical properties of skin, subcutaneous, and muscle tissues: a review. J Innovat Opt Health Sci 2011; 4(1): 9-38. DOI: 10.1142/S1793545811001319.
  28. Shchyogolev SYu. Inverse problems of spectroturbidimetry of biological disperse systems: An overview. J Biomed Opt 1999; 4(4): 490-503. DOI: 10.1117/1.429954.
  29. Mourant JR, Fuselier T, Boyer J, Johnson TM, Bigio IJ. Predictions and measurements of scattering and absorption over broad wavelength ranges in tissue phantoms. Appl Opt 1997; 36(4): 949-957. DOI: 10.1364/AO.36.000949.
  30. Schmitt JM, Kumar G. Optical scattering properties of soft tissue: a discrete particle model. Appl Opt 1998; 37(13): 2788-2797. DOI: 10.1364/AO.37.002788.
  31. Jacques SL. Fractal nature of light scattering in tissues. J Innovat Opt Health Sci 2011; 4(1): 1-7. DOI: 10.1142/S1793545811001289.
  32. Heino J, Arridge S, Sikora J, Somersalo E. Anisotropic effects in highly scattering media. Phys Rev E 2003; 68: 031908. DOI: 10.1103/PhysRevE.68.031908.
  33. Kapinus EI, Khalyavka TA, Shimanovskaya VV, Viktorova TI, Strelko VV. Photocatalytic activity of spectro-pure titanium dioxide: Effects of crystalline structure, specific surface area and sorption properties. Int J Photoenergy 2003; 5: 160-166.

© 2009, IPSI RAS
Institution of Russian Academy of Sciences, Image Processing Systems Institute of RAS, Russia, 443001, Samara, Molodogvardeyskaya Street 151; E-mail:; Phones: +7 (846) 332-56-22, Fax: +7 (846) 332-56-20