Generation of radially polarized zero-order Bessel beams by diffractive and polarization optics
S.V. Karpeev


Image Processing Systems Institute оf RAS – Branch of the FSRC “Crystallography and Photonics” RAS, Samara, Russia,
Samara National Research University, Samara, Russia

Full text of article: Russian language.


An optical system for the generation of azimuthally and radially polarized zero-order Bessel beams is proposed. A zero-order Bessel beam is formed by an amplitude diffractive axicon, whereas the polarization conversion is based on the interference in a multilayer structure. A radially polarized zero-order Bessel beam is experimentally generated with the help of a binary-amplitude axicon.

amplitude diffractive axicon, Bessel beams, radial polarization interference polarizer.

Karpeev SV. Generation of radially polarized zero-order Bessel beams by diffractive and polarization optics. Computer Optics 2016; 40(4): 583-587. DOI: 10.18287/2412-6179-2016-40-4-583-587.


  1. Zhan Q. Cylindrical vector beams: from mathematical concepts to applications. Advances in Optics and Photonics 2009; 1(1): 1-57. DOI: 10.1364/AOP.1.000001.
  2. Shvedov V, Davoyan AR, Hnatovsky C, Engheta N, Krolikowski W. A long-range polarization-controlled optical tractor beam. Nature Photonics 2014; 8: 846-850. DOI: 10.1038/nphoton.2014.242.
  3. Khonina SN, Karpeev SV, Alferov SV, Savelyev DA, Laukkanen J, Turunen J. Experimental demonstration of the generation of the longitudinal E-field component on the optical axis with high-numerical-aperture binary axicons illuminated by linearly and circularly polarized beams. Journal of Optics 2013; 15(8): 085704. DOI: 10.1088/2040-8978/15/8/085704.
  4. Khonina SN, Alferov SV, Karpeev SV. Strengthening the longitudinal component of the sharply focused electric field by means of higher-order laser beams. Optics Letters 2013; 38(17): 3223-3226. DOI: 10.1364/OL.38.003223.
  5. Porfirev AP, Kovalev AA, Kotlyar VV. Optical trapping and moving of microparticles using asymmetrical Bessel-Gaussian beams. Computer Optics 2016; 40(2): 152-157. DOI: 10.18287/2412-6179-2016-40-2-152-157.
  6. Morozov AA, Skidanov RV. Complex vortex beams for of rotation of micromechanical elements. Computer Optics 2013; 37(1): 68-75.
  7. Rykov MA, Skidanov RV. Modifying the laser beam intensity distribution for obtaining improved strength characteristics of an optical trap. Applied Optics 2014; 53(2): 156-164. DOI: 10.1364/AO.53.000156.
  8. Cancula M, Ravnik M, Zumer S. Generation of vector beams with liquid crystal disclination lines. Phys Rev E 2014; 90: 022503. DOI: 10.1103/PhysRevE.90.022503.
  9. Khonina SN, Karpeev SV. Generating inhomogeneously polarized higher-order laser beams by use of DOEs beams. J Opt Soc Am A 2011; 28(10): 2115-2123. DOI: 10.1364/JOSAA.28.002115.
  10. Khonina SN, Karpeev SV. Grating-based optical scheme for the universal generation of inhomogeneously polarized laser beams. Appl Opt 2010; 49(10): 1734-1738. DOI: 10.1364/AO.49.001734.
  11. Khonina SN, Karpeev SV, Alferov SV. Polarization converter for higher-order laser beams using a single binary diffractive optical element as beam splitter. Opt Lett 2012; 37(12): 2385-7. DOI: 10.1364/OL.37.002385.
  12. Alferov SV, Karpeev SV, Khonina SN, Moiseev OYu. Experimental study of focusing of inhomogeneously polarized beams generated using sector polarizing plates. Computer Optics 2014; 38(1): 57-64.
  13. Kawauchi H, Kozawa Y, Sato S, Sato T, Kawakami S. Simultaneous generation of helical beams with linear and radial polarization by use of a segmented half-wave plate. Optics Letters 2008; 33(4): 399-401. DOI: 10.1364/OL.33.000399.
  14. Machavariani G, Lumer Y, Moshe I, Meir A, Jackel S, Davidson N. Birefringence-induced bifocusing for selection of radially or azimuthally polarized laser modes. Applied Optics 2007; 46: 3304-3310. DOI: 10.1364/AO.46.003304.
  15. Khonina SN, Karpeev SV, Alferov SV, Soifer VA. Generation of cylindrical vector beams of high orders using uniaxial crystals. J Opt 2015; 17(6): 065001. DOI: 10.1088/2040-8978/17/6/065001.
  16. Tovar AA. Production and propagation of cylindrically polarized Laguerre-Gaussian laser beams // J Opt Soc Am A 1998; 15(10): 2705-2711. DOI: 10.1364/JOSAA.15.002705.
  17. Kozawa Y, Sato S. Generation of a radially polarized laser beam by use of a conical Brewster prism. Opt Lett 2005; 30(22): 3063-3065. DOI: 10.1364/OL.30.003063.
  18. Skidanov RV, Morozov AA. Diffractive optical elements for forming radially polarized light, based on the use stack of Stoletov. Computer Optics 2014; 38(4): 614-618.
  19. Paranin VD, Karpeev SV, Khonina SN. Generation of radially polarized beams based on the refractive elements with interference polarizing coatings. Computer Optics 2015; 39(4): 492-499. DOI: 10.18287/0134-2452-2015-39-4-492-499.

© 2009, IPSI RAS
Institution of Russian Academy of Sciences, Image Processing Systems Institute of RAS, Russia, 443001, Samara, Molodogvardeyskaya Street 151; E-mail:; Phones: +7 (846) 332-56-22, Fax: +7 (846) 332-56-20