(41-4) 01 * << * >> * Russian * English * Content * All Issues

Optical properties of lowest-energy carbon allotropes from the first-principles calculations
Saleev V.A., Shipilova A.V.


Samara National Research University, Samara, Russia

 PDF, 1 089 kB

DOI: 10.18287/2412-6179-2017-41-4-476-483

Pages: 476-483.

We study optical properties of lowest-energy carbon allotropes in the infrared, visible and ultraviolet spectral ranges in the general gradient approximation of the density functional theory. In our calculations we use an all-electron approach as well as a pseudo-potential approximation. In the infrared range, complex dielectric functions, infrared and Raman spectra have been calculated using a CRYSTAL14 program. Electronic properties and energy-dependent dielectric functions in the visible and ultraviolet spectral ranges are calculated using a VASP program. We describe with good accuracy the experimentally known optical properties of a cubic diamond crystal. Using the obtained set of relevant calculation parameters, we predict the optical constants, dielectric functions and Raman spectra of the lowest-energy hypothetical carbon allotropes and lonsdaleite.

optical properties, Raman spectrum, first-principles calculations, density functional theory, crystal structure, carbon allotropes.

Saleev VA, Shipilova AV. Optical properties of lowest-energy carbon allotropes from first-principles calculations. Computer Optics 2017; 41(4): 476-483. DOI: 10.18287/2412-6179-2017-41-4-476-483.


  1. Adachi S. Optical constants of crystalline and amorphous semiconductors. New York: Springer Science & Business Media; 1999. ISBN: 978-0-7923-8567-7.
  2. Yang N, ed. Novel aspects of diamond: From growth to applications. Cham, Heidelberg, New York, Dordrecht, London: Springer International Publishing Switzerland; 2015. ISBN: 978-3-319-09833-3.
  3. Zaitsev AM. Optical properties of diamond. Berlin, Heidelberg: Springer-Verlag; 2001. ISBN: 978-3-540-66582-3.
  4. Bundy FP, Kasper JS. Hexagonal diamond–A new form of carbon. J Chem Phys 1967; 46(9): 3437-3446. DOI: 10.1063/1.1841236.
  5. Frondel C, Marvin UB. Lonsdaleite, a hexagonal polymorph of diamond. Nature 1967; 214: 587-589. DOI: 10.1038/214587a0.
  6. Hirai H, Kenichi K. Modified phases of diamond formed under shock compression and rapid quenching. Science 1991; 253(5021): 772-774. DOI: 10.1126/scien­ce.253.5021.772.
  7. Hongliang H, Sekine T, Kobayashi T. Direct transformation of cubic diamond to hexagonal diamond. Appl Phys Lett 2002; 81: 610. DOI: 10.1063/1.1495078.
  8. Mao WL, Mao HK, Eng PJ, Trainor TP, Newville M, Kao CC, Heinz DL, Shu J, Meng Y, Hemley RJ. Bonding changes in compressed superhard graphite. Science 2003; 302(5644): 425-427. DOI: 10.1126/science.1089713.
  9. Hoffmann R, Kabanov AA, Golov AA, Proserpio DM. Homo Citans and carbon allotropes: for an ethics of citation. Angew Chem Int Ed 2016; 55(37): 10962-10976. DOI: 10.1002/anie.201600655.
  10. Hu M, Huang Q, Zhao Z, Xu B, Yu D, He J. Superhard and high-strength yne-diamond semimetals. Diamond and Related Materials 2014; 46: 15-20. DOI: 10.1016/j.dia­mond.2014.04.005.
  11. Wang JT, Chen C, Kawazoe Y. Mechanism for direct conversion of graphite to diamond. Phys Rev B 2011; 84(1): 012102. DOI: 10.1103/PhysRevB.84.012102.
  12. Baburin IA, Proserpio DM, Saleev VA, Shipilova AV. From zeolite nets to sp3 carbon allotropes: A topology-based multiscale theoretical study. Physical Chemistry Chemical Physics 2015; 17(2): 1332-1338. DOI: 10.1039/C4CP04569F.
  13. Nesper R, Vogel K, Blöchl PE. Hypothetical carbon modifications derived from zeolite frameworks. Angewandte Chemie International Edition 1993; 32(5): 701-703. DOI: 10.1002/anie.199307011.
  14. Hohenberg P, Kohn W. Inhomogeneous electron gas. Phys Rev 1964; 136: B864-B871. DOI: 10.1103/PhysRev.136.B864.
  15. Kohn W, Sham LJ. Self-consistent equations including exchange and correlation effects. Phys Rev 1965; 140: A1133-A1138. DOI: 10.1103/PhysRev.140.A1133.
  16. Dovesi R, et al. CRYSTAL14: A program for the ab initio investigation of crystalline solids. Int J Quantum Chem 2014: 114(19): 1287-1317. DOI: 10.1002/qua.24658.
  17. Kresse G, Furthmüller J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys Rev B 1996; 54(16): 11169-11186. DOI: 10.1103/PhysRevB.54.11169.
  18. Pascale F, Zicovich-Wilson CM, Lopez F, Civalleri B, Orlando R, Dovesi R. The calculation of the vibration frequencies of crystalline compounds and its implementation in the CRYSTAL code. J Comput Chem 2004; 25(6): 888-897. DOI: 10.1002/jcc.20019.
  19. Maschio L, Kirtman B, Rérat M, Orlando R, Dovesi R. Ab initio analytical Raman intensities for periodic systems through a coupled perturbed Hartree-Fock/Kohn-Sham method in an atomic orbital basis. I. Theory. J Chem Phys 2013; 139(16): 164101. DOI: 10.1063/1.4824442.
  20. Ferrero M, Rérat M, Orlando R, Dovesi R. The calculation of static polarizabilities in 1-3D periodic compounds. The implementation in the CRYSTAL code. J Comput Chem 2008; 29(9): 1450-1459. DOI: 10.1002/jcc.20905.
  21. Perdew JP, Burke K, Ernzerhof M. Generalized gradient approximation made simple. Phys Rev Lett 1996; 77(18): 3865-3868. DOI: 10.1103/PhysRevLett.77.3865.
  22. Peintinger MF, Oliveira DV, Bredow T. Consistent gaussian basis sets of triple-zeta valence with polarization quality for solid-state calculations. J Comp Chem 2013; 34(6): 451-459. DOI: 10.1002/jcc.23153.
  23. Becke AD. Density-functional thermochemistry. III. The role of exact exchange. J Chem Phys 1993; 98(7): 5648-5652. DOI: 10.1063/1.464913.
  24. Gordon MS, Binkley JS, Pople JA, Pietro WJ, Hehre WJ. Self-consistent molecular orbital methods. 22. Small split-valence basis sets for second-row elements. J Am Chem Soc 1982; 104(10): 2797-2803. DOI: DOI: 10.1021/ja00374a017.
  25. Baima J, Zelferino A, Olivero P, Erba A, Dovesi R. Raman spectroscopic features of the neutral vacancy in diamond from ab ignition quantum-mechanical calculations. Phys Chem Chem Phys 2016; 18(3): 1961-1968. DOI: 10.1039/C5CP06672G.
  26. Heyd J, Scuseria GE, Ernzerhof M. Erratum: Hybrid functionals on a screened Coulomb potential. J Chem Phys 2006; 124(21): 219906. DOI: 10.1063/1.2204597.
  27. Isaenko S, Shumilova T. Thermostimulated Raman spectrum dynamics of lonsdaleite. EGU General Assembly 2012; 14: 608.
  28. Goryainov SV, Likhacheva AY, Rashchenko SV, Shubin AS, Afanas'ev VP, Pokhilenko NP. Raman identification of lonsdaleite in Popigai impactites. J Raman Spectrosc 2014; 45(4): 305-313. DOI: 10.1002/jrs.4457.
  29. Filik J, Harvey JN, Allan NL, May PW, Dahl JEP, Liu S, Carlson RMK. Raman spectroscopy of nanocrystalline diamond: An ab initio approach. Phys Rev B 2006; 74(3): 035423. DOI: 10.1103/PhysRevB.74.035423.
  30. Wu BR, Xu J. Total energy calculations of the lattice properties of cubic and hexagonal diamond. Phys Rev B 1998; 57(21): 13355-13359. DOI: 10.1103/PhysRevB.57.13355.
  31. Denisov VN, Mavrin BN, et. al. First-principles, UV Raman, X-ray diffraction and TEM study of the structure and lattice dynamics of the diamond-lonsdaleite system. Diamond & Relared Matherials 2011; 20(7): 951-953. DOI: 10.1016/j.diamond.2011.05.013.
  32. Wang Z, Zhang RJ, Zheng YX, et al. Electronic and optical properties of novel carbon allotropes. Carbon 2016; 101: 77-85. DOI: 10.1016/j.carbon.2016.01.078.
  33. Kaminskii AA, Ral’chenko VG, Yoneda H, Bol’shakov AP, Inyushkin AV. Stimulated Raman scattering-active isotopically pure 12С and 13С diamond crystals: A milestone in the development of diamond photonics. JETP Letters 2016; 104(5): 347-352. DOI: 10.1134/S0021364016170082.
  34. Salvatori S, Girolami M, Oliva P, Conte G, Bolshakov A, Ralchenko V, Konov V. Diamond device architectures for UV laser monitoring. Laser Phys 2016; 26: 084005. DOI: 10.1088/1054-660X/26/8/084005.

© 2009, IPSI RAS
Institution of Russian Academy of Sciences, Image Processing Systems Institute of RAS, Russia, 443001, Samara, Molodogvardeyskaya Street 151; E-mail: journal@computeroptics.ru; Phones: +7 (846) 332-56-22, Fax: +7 (846) 332-56-20