Peculiarities of the Doppler effect in a multimode waveguide
Glushchenko A.G., Glushchenko E.P., Ustinova E.S.


Volga State University of Telecommunications and Informatics, Samara, Russia,
Volga State University of Service, Samara, Russia

Full text of article: Russian language.


The paper considers peculiar features of the Doppler effect that occurs when fundamental and higher-order modes reflect at a movable dielectric layer in multimode waveguides. Relationships for calculating frequencies of different modes of waves that reflect at and pass  through the dielectric layer are derived. It is established that with increasing order of the mode, its frequency gets less dependent on the layer motion rate for the reflected waves, at the same time showing a stronger dependence for the transmitted waves. The interaction of waves with the inhomogeneous movable layer leads to the excitation of higher-order modes of the reflected and passed waves, so that each mode corresponds to a different frequency shift (multi-frequency Doppler effect).

multimode waveguides, reflection, multi-frequency Doppler effect.

Glushchenko AG, Glushchenko EP, Ustinova ES. Peculiarities of the Doppler effect in a multimode waveguide. Computer Optics 2017; 41(5): 687-693. DOI: 10.18287/2412-6179-2017-41-5-687-693.


  1. Landsberg GS. Optics [In Russian]. 6th ed. Moscow: "Fizmatlit" Publisher; 2003. ISBN: 5-9221-0314-8.
  2. Eden A. The search for Christian Doppler. Wien: Springer-Verlag; 1992. ISBN: 978-3-7091-7378-7.
  3. Seddon N, Bearpark T. Observation of the inverse Doppler effect. Science 2003; 302(5650): 1537-1540. DOI: 10.1126/science.1089342.
  4. Schuster PM. Moving the stars: Christian Doppler, his life, his works and principle and the world after. Pöllauberg, Austria: Living Edition Publishers; 2005. ISBN: 978-3-901585-05-2.
  5. Kozyrev AB, van der Weide DW. Explanation of the inverse Doppler effect observed in nonlinear transmission lines. Physical Review Letters 2005; 94(20): 203902. DOI: 10.1103/PhysRevLett.94.203902.
  6. Glushchenko AG, Glushchenko EP, Ivanov VV, Ustinova ES. Media movement effect on elastic waves propagation in planar waveguides. Eastern European Scientific Journal 2013; 6: 38-42. DOI: 10.12851/EESJ201312ART07.
  7. Kharitonov SI, Kazanskiy NL, Doskolovich LL, Strelkov YS. Modeling the reflection of the electromagnetic waves at a diffraction grating generated on a curved surface. Computer Optics 2016; 40(2): 194-202. DOI: 10.18287/2412-6179-2016-40-2-194-202.
  8. Gorban II. Acoustic ray reflection and refraction on moving media interface [In Russian]. Acoustic Bulletin 2004; 7(2): 36-41.
  9. Ivakhnik VV, Savelyev MV. Spatial and temporal characteristics of a nondegenerate four-wave radiation converter in a transparent medium based on electrostriction and Dufour effect. Computer Optics 2015; 39(4): 486-491. DOI: 10.18287/0134-2452-2015-39-4-486-491.
  10. Kuzelev MV, Rukhadze AA. Anomalous Doppler effect and stimulated Cherenkov effect in a plasma waveguide with a thin-walled annular electron beam. Plasma Physics Reports 2005; 31(8): 638-645. DOI: 10.1134/1.2031624.
  11. Ignatov YuA, Klimov AA, Nikitov SA. Anomalous doppler effect observed during propagation of magnetostatic waves in ferromagnetic films and ferrite-dielectric-metal structures. Journal of Communications Technology and Electronics 2010; 55(4): 449-456. DOI: 10.1134/S106422691004011X.
  12. Lazarev YuF. Lag signals and Doppler effect [In Russian]. Bulletin of NTUU "Kyiv Polytechnic Institute", Series Instrument Making 2011, 41: 168-179.
  13. Kartashov IN, Kuzelev MV, Rukhadze AA, Sepehri JN. Collective Cherenkov effect and anomalous Doppler effect in a bounded spatial region. Technical Physics: The Russian Journal of Applied Physics 2005, 50(3): 298-307. DOI: 10.1134/1.1884728.
  14. Li G, Zentgraf T, Zhang S. Doppler effect in nonlinear optics. Nature Physics 2016, 12: 736-740. DOI: 10.1038/nphys3699.
  15. Vilov SA, Didenkulov IN, Mart'yanov AI, Pronchatov-Rub­tsov NV. The possibility of using the effect of the non-linear acoustical waves scattering in medical diagnosis [In Russian]. Izvestiya SFedU, Engineering Sciences 2014, 10: 145-153.
  16. Kartashov IN, Kuzelev MV. Beam instabilities in the collective Cherenkov effect and anomalous Doppler effect in a spatially bounded system near the nontransparency band. Technical Physics. The Russian Journal of Applied Physics 2012, 57(4): 487-494. DOI: 10.1134/S1063784212040135.
  17. Garetz BA. Angular Doppler effect. J Opt Soc Am 1981; 71(5): 609-611. DOI: 10.1364/JOSA.71.000609.
  18. Dholakia K. An experiment to demonstrate the angular Doppler effect on laser light. Am J Phys 1998; 66(11): 1007-1010. DOI: 10.1119/1.19000.
  19. Korech O, Steinitz U, Gordon RJ, Averbukh ISh, Prior Y. Observing molecular spinning via the rotational Doppler effect. Nature Photonics 2013, 7: 711-714. DOI: 10.1038/nphoton.2013.189.
  20. Barsukov КA, Smirnova АА. The Doppler effect in chiral media. Proc 1995 Int Symposium of Electromagnetic Theory URSI 1995, 239-241.
  21. Barsukov KA. About the Doppler effect in anisotropic and gyrotropic medium. JETP 1959, 9(5): 1052-1056.
  22. Rozanov NN. Subluminal and superluminal parametric Doppler effect in the case of light reflection from a moving smooth medium inhomogeneity. JETP 2012; 115(6): 962-968. DOI: 10.1134/S1063776112130110.
  23. Ustinov AV, Degtyarev SA, Khonina SN. Diffraction by a conical axicon considering multiple internal reflections. Computer Optics 2015, 39(4): 500-507. DOI: 10.18287/0134-2452-2015-39-4-500-507.
  24. Jebbor N, Seddik B. A microwave method for complex permittivity extraction of thin materials. J Microw Optoelectron Electromagn Appl 2012, 11(2): 285-295.DOI: 10.1590/S2179-10742012000200006.
  25. Collin RE. Foundations for microwave engineering. 2nd ed. Wiley-IEEE Press; 2000. ISBN: 978-0-7803-6031-0.
  26.  Loza OT. Generation of high-current relativistic electron beams with stable (for a microsecond) parameters using explosive emission cathodes. Technical Physics. The Russian Journal of Applied Physics 2008; 53(11): 1479-1484. DOI: 10.1134/S1063784208110133.
  27. Bekhovskaya KS, Bogdankevich IL, Strelkov PS, Tarakanov VP, Ul’yanov DK. The use of a high-current electron beam in plasma relativistic microwave oscillators. Plasma Physics Reports. 2011, 37(13): 1119-1124. DOI : 10.1134/S1063780X11070051.
  28. Rozanov NN. Superluminal parametric Doppler effect in insulators and in an electron-positron vacuum. JETP Letters 2012; 95(12): 609-612. DOI: 10.1134/S0021364012120132.
  29. Wang LJ, Kuzmich A, Dogariu A. Gain-assisted superluminal light propagation. Nature 2000; 406(6793): 277-279. DOI: 10.1038/35018520.
  30. Rozanov NN. Parametric Doppler effect upon reflection of light from a moving smooth inhomogeneity of the medium. Optics and Spectroscopy. 2012, 113(5): 556-559. DOI: 10.1134/S0030400X12110045.

© 2009, IPSI RAS
Institution of Russian Academy of Sciences, Image Processing Systems Institute of RAS, Russia, 443001, Samara, Molodogvardeyskaya Street 151; E-mail: ; Phones: +7 (846 2) 332-56-22, Fax: +7 (846 2) 332-56-20