Pulmonary emphysema recognition by CT scan
Smelkina N.A., Kolsanov A.V., Chaplygin S.S., Zelter P.M., Khramov A.G.


Samara National Research University, Samara, Russia,
Samara State Medical University, Samara, Russia

Full text of article: Russian language.


We discuss a simple method for automatic recognition of pulmonary emphysema in three-dimensional computer tomography (CT) images. This technique allows one to quantify the disease progress, calculating some numerical characteristics, such as the percentage of the lung tissue affected, as well as visualizing its location and intensity histogram in the region of interest. An experiment on the test data shows that the recognition error is not higher than 7.5%.

CT scan, pulmonary emphysema, diagnostic images, pathology segmentation, data mining.

Smelkina NA, Kolsanov AV, Chaplygin SS, Zelter PM, Khramov AG. Pulmonary emphysema recognition by CT scan. Computer Optics 2017; 41(5): 726-731. DOI: 10.18287/2412-6179-2017-41-5-726-731.


  1. Vogelmeier CF, Criner GJ, Martinez FJ, Anzueto A, Barnes PJ, Bourbeau J, Celli BR, Chen R, Decramer M, Fabbri LM, Frith P, Halpin DM, López Varela MV, Nishimura M, Roche N, Rodriguez-Roisin R, Sin DD, Singh D, Stockley R, Vestbo J, Wedzicha JA, Agustí A. Global strategy for the diagnosis, management and prevention of chronic obstructive lung disease 2017 report: GOLD executive summary. Respirology 2017; 22(3): 575-601. DOI: 10.1111/resp.13012.
  2. Zelter PM. Computer-tomography in the diagnosis and phenotyping of chronic obstructive pulmonary disease [In Russian]. PhD dissertation. Saint-Peterburg; 2016.
  3. Thoracic VCAR. Source: http://www3.gehealthcare.co.uk/en-gb/products/categories/advanced_visualization/applications/thoracic_vcar.
  4. Card contract (4.3-Autoplan-2014). Source: <http://pharma-2020.ru/search_gk/id/1269>.
  5. Wolf I, Vetter M, Wegner I, Nolden M, Bottger Th, Hastenteufel M, Schobinger M, Kunert T, Meinzer H-P. The medical imaging interaction toolkit (MITK): A toolkit facilitating the creation of interactive software by extending VTK and ITK. Proc SPIE 2004; 5367: 16-27. DOI: 10.1117/12.535112.
  6. Otsu N. A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 1979; 9(1): 62-66. DOI: 10.1109/TSMC.1979.4310076.
  7. Andrianov AI. Text area detection on complicated images. Modern Problems of Science and Education 2013; 3; Source: <https://www.science-education.ru/ru/article/view?id=9311>.
  8. Prokop M, Galanski M. Spiral and multislice computed tomography of the body. Stuttgart, New York: Thieme; 2003. ISBN: 978-3-1311-6481-0.
  9. Rabiner LR, Gold B. Theory and application of digital signal processing // Englewood Cliffs, NJ: Prentice-Hall, Inc., 1975. – Т. 1. – 777 p.

© 2009, IPSI RAS
Institution of Russian Academy of Sciences, Image Processing Systems Institute of RAS, Russia, 443001, Samara, Molodogvardeyskaya Street 151; E-mail: journal@computeroptics.ru ; Phones: +7 (846 2) 332-56-22, Fax: +7 (846 2) 332-56-20