Design of Extruded refractive optical elements to generate a prescribed intensity distribution
Andreeva K.V., Andreev E.S., Moiseev M.A., Kravchenko S.V., Byzov E.V., Doskolovich L.L.


Image Processing Systems Institute of the RAS – Branch of the FSRC “Crystallography and Photonics” RAS, Samara, Russia,

Samara National Research University, Samara, Russia

Full text of article: Russian language.


A new method for the design of extruded optical elements with two refractive surfaces is presented. The method is based on the developed fast ray-tracing procedure, in which optical surfaces are approximated by a set of planes. High efficiency of the proposed method is illustrated by the examples of designed extruded optical elements for generating uniform intensity and illuminance distributions. The luminous efficacy of the optical element is shown to be over 89 %, whereas the relative root-mean-square error of the generated irradiance distribution is under 2 %.

LED optical element, secondary optics, ray tracing, optimization of optical surfaces.

Andreeva KV, Andreev ES, Moiseev MA, Kravchenko SV, Byzov EV, Doskolovich LL. Design of extruded refractive optical elements to generate a prescribed intensity distribution. Computer Optics 2017; 41(6): 812-819. DOI: 10.18287/2412-6179-2017-41-6-812-819.


  1. Wu R, Xu L, Liu P, Zhang Y, Zheng Z, Li H, Liu X. Freeform illumination design: a nonlinear boundary problem for the Monge–Ampére equation. Opt Lett 2013; 38(2): 229-231. DOI: 10.1364/OL.38.000229.
  2. Wu R, Benítez P, Zhang Y, Miñano JC. Influence of the characteristics of a light source and target on the Monge–Ampére equation method in freeform optics design. Opt Lett 2014; 39(3): 634-637. DOI: 10.1364/OL.39.000634.
  3. Kravchenko SV, Moiseev MA, Doskolovich LL, Kazanskiy NL. Design of axis-symmetrical optical element with two aspherical surfaces for generation of prescribed irradiance distribution [In Russian]. Computer Optics 2011; 35(4): 467-472.
  4. Oliker VI, Waltman P. Radially symmetric solutions of a MongeAmpere equation arising in the reflector mapping problem. Proceedings of the UAB International Conference on Differential Equations and Mathematical Physics, Lecture Notes in Math 1987: 361-374.
  5. Moiseev MA, Doskolovich LL, Borisova KV, Byzov EV. Fast and robust technique for design of axisymmetric TIR optics in case of an extended light source. J Mod Opt 2013; 60(14): 1100-1106. DOI: 10.1080/09500340.2013.844864.
  6. Luo Y, Feng Z, Han Y, Li H. Design of compact and smooth free-form optical system with uniform illuminance for LED source. Optics Express 2010; 18(9): 9055-9063. DOI: 10.1364/OE.18.009055.
  7. Liu P, Wang H, Wu R, Yang Y, Zhang Y, Zheng Y, Li H, Liu X. Uniform illumination design by configuration of LEDs and optimization of LED lens for large-scale color-mixing applications. Applied Optics 2013; 52(17): 3998-4005. DOI: 10.1364/AO.52.003998.
  8. Moiseev MA, Doskolovich LL, Kazanskiy NL. Design of high-efficient freeform LED lens for illumination of elongated rectangular regions. Optics Express 2011; 19(53): A225-A233. DOI: 10.1364/OE.19.00A225.
  9. Chen E, Yu F. Design of LED-based reflector-array module for specific illuminance distribution. Opt Commun 2013; 289: 19-27. DOI: 10.1016/j.optcom.2012.09.082.
  10. Tadmor Z, Klein I. Engineering principles of plasticating extrusion. New York: Van Nostrand Reinhold Inc.; 1970. ISBN: 978-0442156350.
  11. Zhang JX, Lowery CH. Extruded wide angle lens for use with a LED light source. Patent US8602604 of December 10, 2013.
  12. Parkyn WA, Pelka DG. Cylindrical irradiance-mapping lens and its applications to LED shelf-lighting. Patent US7273299 of September 25, 2007.
  13. Parkyn WA, Pelka DG. Linear illumination lens with Fresnel facets. Patent US7559672 of June 14, 2009.
  14. Doskolovich LL, Moiseev MA. Design of radiosymmetrical refractive surfaces with taking Fresnel loss into account [In Russian]. Computer Optics 2008; 32(2): 201-203.
  15. Doskolovich LL, Kharitonov SI, Petrova OI. A DOE to form a line-shaped directivity diagram [In Russian]. Computer Optics 2002; 24: 40-42.
  16. Butcher JCh. Numerical methods for ordinary differential equations. 2nd ed. New York: John Wiley & Sons; 2003. ISBN: 978-0-471-96758-3.
  17. Andreev ES, Moiseev MA, Borisova KV, Doskolovich LL. Monte–Carlo ray tracing method for axisymmetrical optical elements [In Russian]. Computer Optics 2015; 39(3): 357-362. DOI: 10.18287/0134-2452-2015-39-3-357-362.
  18. Keys RG. Cubic convolution interpolation for digital image processing. IEEE Transactions on Acoustics, Speech, and Signal Processing 1981; 29(6): 1153-1160. DOI: 10.1109/TASSP.1981.1163711.
  19. Moiseev MA, Borisova KV, Byzov EV, Doskolovich LL. Optimization method for computation of tir optical elements based on quick raytracing procedure [In Russian]. Computer Optics 2013; 37(1): 51-58.

© 2009, IPSI RAS
151, Molodogvardeiskaya str., Samara, 443001, Russia; E-mail: ; Tel: +7 (846) 242-41-24 (Executive secretary), +7 (846)332-56-22 (Issuing editor), Fax: +7 (846) 332-56-20