Error analysis in digital processing of the results of interferometric control of nano-scale local deviations of optical surfaces
Denisov D.G.


Bauman Moscow State Technical University, Moscow, Russia

Full text of article: Russian language.


A dynamic interferometry method for controlling nano-scale local deviations of optical surfaces from a prescribed profile is developed, theoretically substantiated, and experimentally verified on the basis of an algorithm for calculating an objective function, defined as the spectral density of a one-dimensional correlation function. Theoretical and experimental approaches to determining the root-mean-square error when finding local deviations of the optical surfaces for the element diameters ranging from 100 mm to 1,000 mm are presented, while taking into account the non-excluded systematic and random error components in determining the objective function.

optical control, interferometry, surface measurements, power spectral density, method errors, edge effect, the effect of "leakage" of frequency.

Denisov DG. Error analysis in digital processing of the results of interferometric control of nano-scale local deviations of optical surfaces. Computer Optics 2017; 41(6): 820-830. DOI: 10.18287/2412-6179-2017-41-6-820-830.


  1. Abdulkadyrov MA, Dobrikov NS, Patrikeev AP, Patrikeev VE, Semenov AP. Technology for fabricating large, high-accuracy, lightened aspheric mirrors with high stability of the surface shape. J Opt Techn 2014; 81(12): 706-713. DOI: 10.1364/JOT.81.000706.
  2. Abdulkadyrov MA. Modern ways of production of astronomical and space mirrors [In Russian]. Photonics 2015; 3: 62-79.
  3. Denisov DG. Development of laser interferometric methods and equipment to control the profile and smoothness of the surfaces of large-size optical mirrors at a polishing stage. Thesis for the Candidate degree in Technical Sciences. Moscow, 2010.
  4. Campbell JH, Hawley-Fedder RA, Stolz ChJ, Menapace JA, Borden MR, Whitman PK, Yu J, Runkel MJ, Riley MO, Feit MD, Hackel RP. NIF optical materials and fabrication technologies: an overview. Proc SPIE 2004; 5341. DOI: 10.1117/12.538462.
  5. Denisov DG, Baryshnikov NV, Gladysheva YaV, Karasik VE, Morozov AB, Patrikeev VE. Method for certification monitoring of surface inhomogeneities of optics based on frequency analysis of the surface profile. Meas Tech 2017; 60(2): 121-127. DOI: 10.1007/s11018-017-1160-0.
  6. Denisov DG, Karasik VE, Orlov VM. Measurement of the microroughness parameters of large-size polished optics surfaces using laser interferometry [In Russian.] Metrology 2009; 9: 15-24.
  7. Nikitin A, Sheldakova J, Kudryashov A, Borsoni G, Denisov D, Karasik V, Sakharov A. A device based on the Shack-Hartmann wave front sensor for testing wide aperture optics. Proc SPIE 2016; 9754: 97540K. DOI: 10.1117/12.2219282.
  8. Nikitin A, Sheldakova J, Kudryashov A, Denisov D, Karasik V, Sakharov A. Hartmannometer versus Fizeau interferometer: advantages and drawbacks. Proc SPIE 2015; 9369: 936905. DOI: 10.1117/12.2085263.
  9. Baryshnikov NV, Denisov DG, Karasik VE, Sakharov AA. Method and equipment for attestation for control of the radius curvature of spherical surfaces of optical details by using a wave front sensor. Proc V International Conference on Photonics and Information optics 2016: 416-417.
  10. Poleshchuk AG, Khomutov VN, Matochkin AE, Nasyrov RK, Cherkashin VV. Laser interferometers for optical surfaces testing [In Russian]. Photonics 2016; 4: 38-51. DOI: 10.22184/1993-7296.2016.
  11. Poleshchuk AG, Korolkov VP, Nasyrov RK, Khomutov VN, Konchenko AS. Methods for on-line testing of characteristics of diffractive and conformal optical elements during the manufacturing process [In Russian]. Computer Optics 2016; 40(6): 818-829. DOI: 10.18287/2412-6179-2016-40-6-818-829.
  12. Sidick E. Power spectral density specification and analysis of large optical surfaces. Proc SPIE 2009; 7390: 73900L. DOI: 10.1117/12.823844.
  13. Alcock SG, Ludbrook GD, Owen T, Dockree R. Using the power spectral density method to characterise the surface topography of optical surfaces. Proc SPIE 2010; 7801: 780108. DOI: 10.1117/12.861539.
  14. Soifer VA, ed. Methods for computer design of diffractive optical elements. New York: John Wiley & Sons, Inc.; 2002. ISBN: 978-0-471-09533-0.
  15. ISO 10110-6:2015. Optics and photonics – Preparation of drawings for optical elements and systems – Part 6: Centring tolerances. 2nd Ed. Vernier, Geneva, Switzerland: ISO; 2015.

© 2009, IPSI RAS
151, Molodogvardeiskaya str., Samara, 443001, Russia; E-mail: ; Tel: +7 (846) 242-41-24 (Executive secretary), +7 (846)332-56-22 (Issuing editor), Fax: +7 (846) 332-56-20