Laser welding of dissimilar metallic materials with use of diffractive optical elements
Murzin S.P., Liedl G.


Samara National Research University, Samara, Russia,
Vienna University of Technology, Vienna, Austria

Full text of article: Russian language.


A use of laser technology it is progressive in the welding of dissimilar materials. Pulsed laser welding of an aluminum alloy AK4 and a titanium alloy VT5-1 was performed. Processing conditions were determined, the realization of which during melting of materials in the heat-affected zone makes it possible to obtain a homogeneous structure without voids and shells, potentially producing sufficiently sound welded joints. To create the required power density distribution across the laser beam, it was found expedient to use diffractive optical elements. Aluminum and copper were welded by continuous laser beam. It is determined that laser action with its well-defined and precise localized heat input makes it possible to significantly reduce the growth of intermetallic compound layers.

metallic material, welded joint, aluminium, laser action, diffractive optical elemen.

Murzin SP, Liedl G. Laser welding of dissimilar metallic materials with use of diffractive optical elements. Computer Optics 2017; 41(6): 848-855. DOI: 10.18287/2412-6179-2017-41-6-848-855.


  1. Yoshida H, Hayashi M, Norikane K. Recent trend of development in aluminum alloys for aircraft. Journal of Japan Institute of Light Metals 2015; 65(9): 441-454. DOI: 10.2464/jilm.65.441.
  2. Weberpals J-P, Schmidt PA, Böhm D, Müller S. Advantages and challenges of dissimilar materials in automotive lightweight construction. Proc SPIE 2015; 9356: 93560A. DOI: 10.1117/12.2084589.
  3. Feistauer EE, Bergmann LA, Barreto LS, dos Santos JF. Mechanical behaviour of dissimilar friction stir welded tailor welded blanks in Al-Mg alloys for Marine applications. Materials and Design 2014; 59: 323-332. DOI: 10.1016/j.matdes.2014.02.042.
  4. Akca E, Gursel A. The effect of diffusion welding parameters on the mechanical properties of titanium alloy and aluminum couples. Metals 2017; 7(1): 22. DOI: 10.3390/met7010022.
  5. Kah P, Vimalraj C, Martikainen J, Suoranta R. Factors influencing Al-Cu weld properties by intermetallic compound formation. International Journal of Mechanical and Materials Engineering 2015; 10(1): 10. DOI: 10.1186/s40712-015-0037-8.
  6. Borrisutthekul R, Mitsomwang P, Rattanachan S, Mutoh Y. Feasibility of using TIG welding in dissimilar metals between steel/aluminum alloy. Energy Research Journal 2010; 1(2): 82-86. DOI: 10.3844/erjsp.2010.82.86.
  7. Saida K, Ohnishi H, Nishimoto K. Fluxless laser brazing of aluminium alloy to galvanized steel using a tandem beam - dissimilar laser brazing of aluminium alloy and steels. Welding International 2010; 24(3): 161-168. DOI: 10.1080/09507110902843065.
  8. Shubhavardhan RN, Surendran S. Friction welding to join dissimilar metals. Int J Emerg Technol Adv Eng 2012; 2(7): 200-210.
  9. Wang J, Li Y, Wu H, Ren J. Micro-image analysis in the diffusion-bonded zone of Fe3Al/Q235 carbon steel dissimilar materials. Bulletin of materials science 2001; 25(5): 367-370.
  10. Pourali M, Abdollah-zadeh A, Saeid T, Kargar F. Influence of welding parameters on intermetallic compounds formation in dissimilar steel/aluminum friction stir welds. J Alloys and Compounds 2017; 715: 1-8. DOI: 10.1016/j.jallcom.2017.04.272.
  11. Meco S, Pardal G, Ganguly S, Williams S, McPherson N. Application of laser in seam welding of dissimilar steel to aluminium joints for thick structural components. Opt Lasers Eng 2015; 67: 22-30. DOI: 10.1016/j.optlaseng.2014.10.006.
  12. Wang P, Chen X, Pan Q, Madigan B, Long J. Laser welding dissimilar materials of aluminum to steel: an overview. Int J Adv Manuf Technol 2016; 87(9-12): 3081-3090. DOI: 10.1007/s00170-016-8725-y.
  13. Hong K-M, Shin YC. Prospects of laser welding technology in the automotive industry: a review. J Mater Process Technol 2017; 245: 46-69. DOI: 10.1016/j.jmatprotec.2017.02.008.
  14. Fan J, Thomy C, Vollertsen F. Effect of thermal cycle on the formation of intermetallic compounds in laser welding of aluminum-steel overlap joints. Physics Procedia 2011; 12(A): 134-141. DOI: 10.1016/j.phpro.2011.03.017.
  15. Kazanskiy NL, Murzin SP, Tregub VI. Optical system for realization selective laser sublimation of metal alloys components. Computer Optics 2010; 34(4): 481-486.
  16. Murzin SP, Tregub VI, Melnikov AA, Tregub NV. Application of radiation focusators for creation of nanoporous metal materials with high specific surface area by laser action. Computer Optics 2013; 37(2): 226-232.
  17. Doskolovich LL, Kazanskiy NL, Soifer VA, Tzaregorodtzev AYe. Analysis of quasiperiodic and geometric optical solutions of the problem of focusing into an axial segment. Optik 1995; 101(2): 37-41.
  18. Kazanskiy NL, Kotlyar VV, Soifer VA. Computer-aided design of diffractive optical elements. Optical Engineering 1994; 33(10): 3156-3166. DOI: 10.1117/12.178898.
  19. Pavelyev VS, Borodin SA, Kazanskiy NL, Kostyuk GF, Volkov AV. Formation of diffractive microrelief on diamond film surface. Opt Laser Technol 2007; 39(6): 1234-1238. DOI: 10.1016/j.optlastec.2006.08.004.
  20. Goncharsky AV, Popov VV, Stepanov VV. Introduction to computer optics [In Russian]. Moscow: Publishing House of Moscow State University; 1991.
  21. Doskolovich LL. Kazanskiy NL, Mordasov VI, Murzin SP, Kharitonov SI. Study of optical systems for transfer control of high energy [In Russian]. Computer Optics 2002; 23: 40-43.
  22. Metev SM, Veiko VP. Laser-assisted microtechnology. Berlin, Heidelberg: Springer; 1998. ISBN 978-3-642-87273-0
  23. Cherolis NE. Fatigue in the aerospace industry: striations. J Fail Anal and Preven 2008; 8(3): 255-258. DOI: 10.1007/s11668-008-9146-5.
  24. Shen C, Zhang J, Ge J. Microstructures and electrochemical behaviors of the friction stir welding dissimilar weld. Journal of Environmental Sciences 2011; 23(Suppl.): S32-S35.
  25. Jaya A, Tiong UH, Mohammed R, Bil C, Clark G. Corrosion treatments and the fatigue of aerospace structural joints. Procedia Engineering 2010; 2(1): 1523-1529. DOI: 10.1016/j.proeng.2010.03.164.
  26. Murzin SP. Formation of nanoporous structures in metallic materials by pulse-periodic laser treatment. Opt Laser Technol 2015; 72: 48-52. DOI: 10.1016/j.optlastec.2015.03.022.
  27. Murzin SP. Local laser annealing for aluminium alloy parts. Lasers in Engineering 2016; 33(1-3): 67-76.
  28. Smelov VG, Sotov AV, Murzin SP. Particularly selective sintering of metal powders by pulsed laser radiation. Key Engineering Materials 2016; 685: 403-407. DOI: 10.4028/
  29. Murzin SP, Balyakin VB. Microstructuring the surface of silicon carbide ceramic by laser action for reducing friction losses in rolling bearings. Opt Laser Technol 2017, 88, 96-98. DOI: 10.1016/j.optlastec.2016.09.007.
  30. Murzin SP, Shakhmatov EV, Igolkin AA, Musaakhunova LF. A study of vibration characteristics and determination of the conditions of nanopores formation in metallic materials during laser action. Procedia Engineering 2015; 106: 266-271. DOI: 10.1016/j.proeng.2015.06.034.
  31. Murzin SP, Kryuchkov AN. Influence of conditions of the samples fixation on the intensity of the nanoporous structure formation in the metallic material by laser action with thermocycling. Procedia Engineering 2015; 106: 272-276. DOI: 10.1016/j.proeng.2015.06.035.
  32. Murzin SP, Prokofiev AB, Safin AI. Study of Cu-Zn alloy objects vibration characteristics during laser-induced nanopores formation. Procedia Engineering 2017; 176: 552-556. DOI: 10.1016/j.proeng.2017.02.297.

© 2009, IPSI RAS
151, Molodogvardeiskaya str., Samara, 443001, Russia; E-mail: ; Tel: +7 (846) 242-41-24 (Executive secretary), +7 (846)332-56-22 (Issuing editor), Fax: +7 (846) 332-56-20