Numerically focused optical coherence microscopy with structured illumination aperture
Grebenyuk A.A., Ryabukho V.P.

Saratov State University, Saratov, Russia,
Institute of Precision Mechanics and Control of the Russian Academy of Sciences, Saratov, Russia,

Currently with the Christian Doppler Laboratory OPTRAMED, Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria


In optical coherence microscopy (OCM) with a given numerical aperture (NA) of the objectives the transverse resolution can be increased by increasing the numerical aperture of illumination (NAi). However, this may also lead to attenuation of the signal with defocus preventing the effective numerically focused 3D imaging of the required sample volume. This paper presents an approach to structuring the illumination aperture, which allows combining the advantages of increased transverse resolution (peculiar to high NAi) with small attenuation of the signal with defocus (peculiar to low NAi) for high-resolution numerically focused 3D imaging in OCM.

optical coherence microscopy, optical coherence tomography, numerical focusing, structured illumination, superresolution, image reconstruction techniques.

Grebenyuk AA, Ryabukho VP. Numerically focused optical coherence microscopy with structured illumination aperture. Computer Optics 2018; 42(2): 248-253. DOI: 10.18287/2412-6179-2018-42-2-248-253.


  1. Ralston TS, Marks DL, Carney PS, Boppart SA. Interferometric synthetic aperture microscopy. Nature Physics 2007; 3: 129-134. DOI: 10.1038/nphys514.
  2. Hillmann D, Lührs C, Bonin T, Koch P, Hüttmann G. Holoscopy-holographic optical coherence tomography. Opt Lett 2011; 36(13): 2390-2392. DOI: 10.1364/OL.36.002390.
  3. Kumar A, Drexler W, Leitgeb RA. Numerical focusing methods for full field OCT: a comparison based on a common signal model. Opt Express 2014; 22(13): 16061-16078. DOI: 10.1364/OE.22.016061.
  4. Grebenyuk A, Federici A, Ryabukho V, Dubois A. Numerically focused full-field swept-source optical coherence microscopy with low spatial coherence illumination. Appl Opt 2014; 53(8): 1697-1708. DOI: 10.1364/AO.53.001697.
  5. Villiger M, Pache C, Lasser T. Dark-field optical coherence microscopy. Opt Lett 2010; 35(20): 3489-3491. DOI: 10.1364/OL.35.003489.
  6. Grebenyuk AA, Ryabukho VP. Theory of imaging and coherence effects in full-field optical coherence microscopy. In Book: Dubois A, ed. Handbook of full-field optical coherence microscopy. Singapore: Pan Stanford Publishing; 2016. Chap 2: 53-89.
  7. Grebenyuk AA, Ryabukho VP. Numerical reconstruction of 3D image in Fourier domain confocal optical coherence microscopy. Proceedings of the International Conference on Advanced Laser Technologies 2012. DOI: 10.12684/alt.1.60.
  8. Grebenyuk AA, Ryabukho VP. Illumination structure and three-dimensional imaging properties in optical coherence microscopy [In Russian]. Proceedings of the International School-Conference for Young Scientists and Specialists “Modern Problems of Physics”, Minsk 2014: 243-247.
  9. Mico V, Zalevsky Z, García-Martínez P, García J. Synthetic aperture superresolution with multiple off-axis holograms. JOSA A 2006; 23(12): 3162-3170. DOI: 10.1364/JOSAA.23.003162.
  10. Alexandrov SA, Hillman TR, Gutzler T, Sampson DD. Synthetic aperture Fourier holographic optical microscopy. Phys Rev Lett 2006; 97: 168102. DOI: 10.1103/PhysRevLett.97.168102.
  11. Price JR, Bingham PR, Thomas CE. Improving resolution in microscopic holography by computationally fusing multiple, obliquely illuminated object waves in the Fourier domain. Appl Opt 2007; 46(6): 827-833. DOI: 10.1364/AO.46.000827.
  12. Chowdhury S, Izatt J. Structured illumination quantitative phase microscopy for enhanced resolution amplitude and phase imaging. Biomed Opt Express 2013; 4(10), 1795-1805. DOI: 10.1364/BOE.4.001795.
  13. Lehmann P, Niehues J, Tereschenko S. 3-D optical inter­ference microscopy at the lateral resolution. International Journal of Optomechatronics 2014; 8(4): 231-241. DOI: 10.1080/15599612.2014.942924.
  14. Federici A, Dubois A. Full-field optical coherence microscopy with optimized ultrahigh spatial resolution. Opt Lett 2015; 40(22): 5347-5350. DOI: 10.1364/OL.40.005347.
  15. Safrani A, Abdulhalim I. Ultrahigh-resolution full-field optical coherence tomography using spatial coherence gating and quasi-monochromatic illumination. Opt Lett 2012; 37(4): 458-460. DOI: 10.1364/OL.37.000458.
  16. Grebenyuk AA, Ryabukho VP. Coherence effects of thick objects imaging in interference microscopy. Proc SPIE 2012; 8427: 84271M. DOI: 10.1117/12.922108.

© 2009, IPSI RAS
151, Molodogvardeiskaya str., Samara, 443001, Russia; E-mail: ; Tel: +7 (846) 242-41-24 (Executive secretary), +7 (846) 332-56-22 (Issuing editor), Fax: +7 (846) 332-56-20