Comparison of the capabilities of histograms and a method of ranged amplitudes in noise analysis of single-photon detectors
Perminov N.S., Smirnov M.A., Nigmatullin R.R., Talipov A.A., Moiseev S.A.

Kazan Quantum Center, KNRTU-KAI, Kazan, Russia,
Zavoisky Physical-Technical Institute of the Russian Academy of Sciences, Kazan, Russia,
Department of Radio-Electronics and Information-Measuring Technique, KNRTU-KAI, Kazan, Russia


A comparative analysis of the method of histograms and the sequence of the ranged amplitudes (SRA) for statistical parametrization of the operation regime of a single-photon avalanche photodetector has been performed. It was shown that in addition to providing all the information that can be obtained using the histogram method, the SRA method also provides  a quick and robust description of the dark counts of the detector for a shorter (compared to histograms) noise sample of ~103 points. The revealed advantages open prospects for introducing the SRA method in the software of high-sensitivity photodetectors.

noise, discrete statistics, noninvasive analysis, SRA, SPAD.

Perminov NS, Smirnov MA, Nigmatullin RR, Talipov AA, Moiseev SA. Comparison of the capabilities of histograms and a method of ranged amplitudes in noise analysis of single-photon detectors. Computer Optics 2018; 42(2): 338-342. DOI: 10.18287/2412-6179-2018-42-2-338-342.


  1. Zhang J, Itzler MA, Zbinden H, Pan JW. Advances in InGaAs/InP single-photon detector systems for quantum communication. Light: Science & Applications 2015; 4(5): e286. DOI: 10.1038/lsa.2015.59.
  2. Cova S, Lacaita A, Ripamonti G. Trapping phenomena in avalanche photodiodes on nanosecond scale. IEEE Electron Device Letters 1991; 12(12): 685-687. DOI: 10.1109/55.116955.
  3. Nigmatullin RR, Smith G. Fluctuation-noise spectroscopy and a “universal” fitting function of amplitudes of random sequences. Phys A: Statist Mech Appl 2003; 320: 291-317. DOI: 10.1016/S0378-4371(02)01600-X.
  4. Baleanu D, Güvenç ZB, Machado JT, eds. New trends in nanotechnology and fractional calculus applications. New York: Springer; 2010. ISBN: 978-90-481-3292-8.
  5. Nigmatullin RR. Strongly correlated variables and existence of a universal distribution function for relative fluctuations. Physics of Wave Phenomena 2008; 16(2): 119-145. DOI: 10.3103/S1541308X08020064.
  6. Smirnov MA, Perminov NS, Nigmatullin RR, Talipov AA, Moiseev SA. Sequences of the ranged amplitudes as a universal method for fast noninvasive characterization of SPAD dark counts. Appl Opt 2018; 57(1): 57-61. DOI:10.1364/AO.57.000057.
  7. Nigmatullin RR, Giniatullin RA, Skorinkin AI. Membrane current series monitoring: essential reduction of data points to ?nite number of stable parameters, Front Comput Neurosci 2014; 8: 120. DOI: 10.3389/fncom.2014.00120.
  8. Nigmatullin RR, Evdokimov YK, Denisov ES, Zhang W. New methods of complex systems inspection: Comparison of the ADC device in different operating modes. In Book: Mastorakis N, Bulucea A, Tsekouras G, eds. Computational Problems in Science and Engineering. Chap 9. Cham, Heidelberg, New York, Dordrecht, London: Springer; 2015: 187-204. DOI: 10.1007/978-3-319-15765-8_9.
  9. Orlov YuN. Optimal histogram interval for non-statio­nary time-series distribution function density estimation. Keldysh Institute Preprints 2013; 014: 1-26.
  10. Spitsyn VG, Bolotova YA, Phan NH, Bui TTT. Using a Haar wavelet transform, principal component analysis and neural networks for OCR in the presence of impulse noise. Computer Optics 2016; 40(2): 249-257. DOI: 10.18287/2412-6179-2016-40-2-249-257.
  11. Umnov AV, Krylov AS. Research of sparse representation method for ringing suppression. Computer Optics 2016; 40(6): 895-903. DOI: 10.18287/2412-6179-2016-40-6-895-903.

© 2009, IPSI RAS
151, Molodogvardeiskaya str., Samara, 443001, Russia; E-mail: ; Tel: +7 (846) 242-41-24 (Executive secretary), +7 (846) 332-56-22 (Issuing editor), Fax: +7 (846) 332-56-20