Distribution of the complex amplitude and intensity in a 3D scattering pattern formed by the optical system for an on-axis point object
Koreshev S.N., Smorodinov D.S., Nikanorov O.V., Frolova M.A.


St. Petersburg National Research University of Information Technologies, Mechanics and Optics, St .Petesrburg, Russia


A quantitative evaluation of the depth of field of optical systems is given. Results of the calculation of the distribution of the complex amplitude and intensity in a three-dimensional scattering pattern formed by the optical system for an on-axis point object are presented. The work was carried out as part of developing optical systems with an extended depth of field for a synthesized hologram of a point object located on a perpendicular constructed to the hologram center.

depth of field, 3D scattering pattern, path difference, phase difference, vector sum, synthesis of holograms.

Koreshev SN, Smorodinov DS, Nikanorov OV, Frolova MA. Distribution of the complex amplitude and intensity in a 3D scattering pattern formed by the optical system for an on-axis point object. Computer Optics 2018; 42(3): 377-384. DOI: 10.18287/2412-6179-2018-42-3-377-384.


  1. Iofis EA. Photo and movie technologies [In Russian]. Moscow: “Sovetskaya Enciklopedia” Publisher; 1981.
  2. Shekhonin AA, ed, Tsukanova GI, Karpova GV, Bagdasarova OV, Karpov VG, Krivopustova YeV, Yezhova KV. Applied optics. Part 2. Study guide [In Russian]. Saint-Petersburg: “SPb GITMO (TU)” Publisher, 2003.
  3. Volosov DS. Photographic optic. Study guide [In Russian]. Moscow: “Iskusstvo” Publisher; 1978.
  4. Françon M. La granularité laser (speckle) et ses applications en optique. Paris: Institut d'Optique et Universite de Paris; 1978.
  5. Castro A, Ojeda-Castañeda J. Asymmetric phase masks for extended depth of field. Appl Opt 2004; 43(17): 3474-3479. DOI: 10.1364/AO.43.003474.
  6. Shain WJ, Vickers NA, Goldberg BB, Bifano T, Mertz J. Extended depth-of-field microscopy with a high-speed deformable mirror. Opt Lett 2017; 42(5): 995-998. DOI: 10.1364/OL.42.000995.
  7. Basov IV, Krasnobaev AA. Methods of depth-of-field extending of optical-digital image detectors [In Russian]. Keldysh Institute preprints 2010; 037.
  8. Koreshev SN, Nikanorov OV, Frolova MA, Novitskaya YaA, Khisamov RI. Methods of increasing the resolving power and depth of field of synthesized hologram-projectors. J Opt Technol 2016; 83(12): 760-764. DOI: 10.1364/JOT.83.000760.
  9. Born M, Wolf E. Principles of optics. 4th ed. Oxford, London, Edinburg, New York, Paris, Frankfurt: Pergamon Press; 1970.
  10. Landsberg GS. Optic [In Russian]. Moscow: “Fizmatlit” Publisher; 2003. ISBN: 5-9221-0314-8.
  11. Fiсhtenholz GM. Course of differential and integral calculus. Vol 1 [In Russian]. Moscow: “Fizmatlit” Publisher; 2003.
  12. Koreshev SN, Smorodinov DS, Nikanorov OV. Imaging properties of discrete holograms. I. How the discreteness of a hologram affects image recontruction. J Opt Technol 2014; 81(3): 123-127. DOI: 10.1364/JOT.81.000123.
  13. Martínez-León L, Clemente P, Mori Y, Climent V, Lancis J, Tajahuerce E. Single-pixel digital holography with phase-encoded illumination. Opt Express 2017; 25(5): 4975-4984. DOI: 10.1364/OE.25.004975.
  14. Nikanorov OV, Ivanov JuA, Koreshev SN. Software for the synthesis and digital reconstruction of hologram projectors. [In Russian]. Scientific and Technical Journal of Information Technologies, Mechanics and Optics 2009; 63(5): 42-47.
  15. Rodionov SA. Principles of optics. Lecture notes [In Russian]. Saint-Petersburg: “SPb GITMO (TU)” Publisher; 2000.

© 2009, IPSI RAS
151, Molodogvardeiskaya str., Samara, 443001, Russia; E-mail: journal@computeroptics.ru ; Tel: +7 (846) 242-41-24 (Executive secretary), +7 (846) 332-56-22 (Issuing editor), Fax: +7 (846) 332-56-20