A four-sector polarization converter integrated in a calcite crystal
Karpeev S.V.
, Podlipnov V.V., Khonina S.N., Paranin V.D., Reshetnikov A.S.


Image Processing Systems Institute оf RAS – Branch of the FSRC “Crystallography and Photonics” RAS, Samara, Russia,
Samara National Research University, Samara, Russia


A new approach to the implementation of sectorial plates for beam polarization conversion is proposed. Using a newly developed etching technology, a four-sector polarization converter integrated into a calcite crystal is implemented. A four-sector polarization converter, which provides a pairwise orthogonal polarization state of the sectors, is fabricated and experimentally characterized. A comparison is made of inter-sector joints of the integrated converter with those of a converter composed of individual wave-plate fragments. Analysis of the spectral properties of such a converter is carried out, wavelengths at which the necessary polarization conversion takes place are determined. The quasi-periodic repetition of phase matching conditions is experimentally shown to slow down  with increasing wavelength.

inhomogeneous polarization, sector polarizing plate, the quality of sector coupling, the spectral method for selecting the phase matching condition.

Karpeev SV, Podlipnov VV, Khonina SN, Paranin VD, Reshetnikov AS. A four-sector polarization converter integrated in a calcite crystal. Computer Optics 2018; 42(3): 401-407. DOI: 10.18287/2412-6179-2018-42-3-401-407.


  1. Machavariani G, Lumer Y, Moshe I, Meir A, Jackel S. Ef?cient extracavity generation of radially and azimuthally polarized beams. Opt Lett 2007; 32(11): 1468-1470. DOI: 10.1364/OL.32.001468.
  2. Machavariani G, Lumer Y, Moshe I, Meir A, Jackel S. Spatially-variable retardation plate for e?cient generationof radially- and azimuthally-polarized beams. Optics Communications 2008; 281(4): 732-738. DOI: 10.1016/j.optcom.2007.10.088.
  3. Man Zh, Min Ch, Zhang Y, Shen Z, Yuan X-C. Arbitrary vector beams with selective polarization states patterned by tailored polarizing ?lms. Laser Phys 2013; 23(10): 105001. DOI: 10.1088/1054-660X/23/10/105001.
  4. Nalimov AG, O'Faolain L, Stafeev SS, Shanina MI, Kotlyar VV. Reflected four-zones subwavelenghth mictooptics element for polarization conversion from linear to radial [In Russian]. Computer Optics 2014; 38(2): 229-236.
  5. Stafeev SS, Nalimov AG, Kotlyar MV, O’Faolain L. A four-zone reflective azimuthal micropolarizer. Computer Optics 2015; 39(5): 709-715. DOI: 10.18287/0134-2452-2015-39-5-709-715.
  6. Berezny AE, Karpeev SV, Uspleniev GV. Computer-generated holographic optical elements produced by photolithography. Optics and Lasers in Engineering 1991; 15(5): 331-340. DOI: 10.1016/0143-8166(91)90020-T.
  7. Niu C-H, Gu B-Y, Dong B-Z, Zhang Y. A new method for generating axially-symmetric and radially-polarized beams. J Phys D: Appl Phys 2005; 38(6): 827-832. DOI: 10.1088/0022-3727/38/6/006.
  8. Khonina SN, Karpeev SV. Generating inhomogeneously polarized higher-order laser beams by use of DOEs beams. JOSA A 2011; 28(10): 2115-2123. DOI: 10.1364/JOSAA.28.002115.
  9. Phua PB, Lai WJ, Lim YL, Tiaw KS, Lim BC, Teo HH, Hong MH. Mimicking optical activity for generating radially polarized light. Opt Lett 2007; 32(4): 376-378. DOI: 10.1364/OL.32.000376.
  10. Lai WJ, Lim BC, Phua PB, Tiaw KS, Teo HH, Hong MH Generation of radially polarized beam with a segmented spiral varying retarder. Opt Express 2008; 16(20): 15694-15699. DOI: 10.1364/OE.16.015694.
  11. Khonina SN, Karpeev SV, Alferov SV, Soifer VA. Generation of cylindrical vector beams of high orders using uniaxial crystals. J Opt 2015; 17(6): 065001. DOI: 10.1088/2040-8978/17/6/065001.
  12. Khonina SN, Karpeev SV, Morozov AA, Paranin VD. Implementation of ordinary and extraordinary beams interference by application of diffractive optical elements. J Mod Opt 2016; 63(13): 1239-1247. – DOI: 10.1080/09500340.2015.1137368.
  13. Khonina SN, Karpeev SV, Paranin VD, Morozov AA. Polarization conversion under focusing of vortex laser beams. along the axis of anisotropic crystals. Phys Lett A 2017; 381(30): 2444-2455. DOI: 10.1016/j.physleta.2017.05.025.
  14. Alferov SV, Karpeev SV, Khonina SN, Moiseev OYu. Experimental study of focusing of inhomogeneously polarized beams generated using sector polarizing plates. Computer Optics 2014; 38(1): 57-64.

© 2009, IPSI RAS
151, Molodogvardeiskaya str., Samara, 443001, Russia; E-mail: journal@computeroptics.ru ; Tel: +7 (846) 242-41-24 (Executive secretary), +7 (846) 332-56-22 (Issuing editor), Fax: +7 (846) 332-56-20