Spatial spectrum of coherence signal for a defocused object images in digital holographic microscopy with partially spatially coherent illumination
Klychkova D.M., Ryabukho V.P.


Institute of Precision Mechanics and Control of the Russian Academy of Sciences, Saratov, Russia

Saratov State University, Saratov, Russia


We study the effect of a decrease in the magnitude of the coherence signal in high-frequency spatial spectrum for a defocused object image in transmission digital holographic microscopy with quasimonochromatic partially spatially coherent illumination. A theoretical description and results of the numerical simulation of the effect for a point scattering object are presented. The effect is experimentally studied by illuminating layered quasi-point scatterers with partially spatially coherent laser light obtained using a moving scatterer. The comparison of the experimental and theory-based numerical results shows them to be in good agreement.

interference microscopy, digital holographic microscopy, imaging, numerical focusing, spatial spectrum of hologram, partial coherence, partially spatially coherent illumination.

Klychkova DM, Ryabukho VP. Spatial spectrum of coherence signal for a defocused object images in digital holographic microscopy with partially spatially coherent illumination. Computer Optics 2018; 42(3): 414-423. DOI: 10.18287/2412-6179-2018-42-3-414-423.


  1. Rosen J, ed. Holography: Research and technologies. Rijeka: InTech; 2011. ISBN: 978-953-307-227-2.
  2. Lee KR, Kim K, Jung J, Heo JH, Cho S, Lee S, Chang G, Jo YG, Park H, Park YK. Quantitative phase imaging techniques for the study of cell pathophysiology: From principles to applications. Sensors 2013; 13(4): 4170-4191. DOI: 10.3390/s130404170.
  3. Schnars U, Falldorf C, Watson J, Jueptner W. Digital holography and wavefront sensing. Berlin, Heidelberg: Springer-Verlag; 2015. ISBN: 978-3-662-44692-8.
  4. Dohet-Eraly J, Yourassowsky C, El Mallahi A, Dubois F. Quantitative assessment of noise reduction with partial spatial coherence illumination in digital holographic microscopy. Opt Lett 2016; 41(1): 111-114. DOI: 10.1364/OL.41.000111.
  5. Claus D, Pedrini G, Buchta D, Osten W. Accuracy enhanced and synthetic wavelength adjustable optical metrology via spectrally resolved digital holography. J Opt Soc Am A 2018; 35(4): 546-552. DOI: 10.1364/JOSAA.35.000546.
  6. Mann ChJ, Yu L, Lo Ch-M, Kim MK. High-resolution quantitative phase-contrast microscopy by digital holography. Opt Express 2005; 13(2): 8693-8698. DOI: 10.1364/OPEX.13.008693.
  7. Minetti C, Vitkova V, Dubois F, Bivas I. Digital holographic microscopy as a tool to study the thermal shape fluctuations of lipid vesicles. Opt Lett 2016; 41(8): 1833-1836. DOI: 10.1364/OL.41.001833.
  8. Kalenkov SG, Kalenkov GS, ShtankoAE. Hyperspectral holography: an alternative application of the Fourier transform spectrometer. J Opt Soc Am B 2017; 34(5): B49-B55. DOI: 10.1364/JOSAB.34.000B49.
  9. Kalenkov SG, Kalenkov GS, Shtan'koAE. Spatiospectral digital holography of microobjects in low-coherence light. Journal of Communications Technology and Electronics 2013; 58(12): 1200-1204.DOI: 10.1134/S1064226913120097.
  10. Kim MK. Principles and techniques of digital holographic microscopy. SPIE Reviews 2010; 1: 018005. DOI: 10.1117/6.0000006.
  11. Grebenyuk AA, Ryabukho VP. Defocus and numerical focusing in interference microscopy with wide time-varying spectrum of illumination field [In Russian]. Computer Optics 2016; 40(6): 772-780. DOI: 10.18287/2412-6179-2016-40-6-772-780.
  12. Dubois F, Joannes L, Legros J-C. Improved three-dimensional imaging with a digital holography microscope with a source of partial spatial coherence. Appl Opt 1999; 38(34): 7085-7094. DOI: 10.1364/AO.38.007085.
  13. Dubois F, Requena M-LN, Minetti C, Monnom O, Istasse E. Partial spatial coherence effects in digital holographic microscopy with a laser source. Appl Opt 2004; 43(5): 1131-1139. DOI: 10.1364/AO.43.001131.
  14. Slabý T, Kolman P, Dostál Z, Antoš M, Lošták M, Chmelík R. Off-axis setup taking full advantage of incoherent illumination in coherence-controlled holographic microscope. Opt Express 2013; 21(12): 14747-14762. DOI: 10.1364/OE.21.014747.
  15. Grebenyuk AA, Ryabukho VP. Numerical focusing in digital holographic microscopy with partially spatially coherent illumination in transmission. Proc SPIE 2014; 9031: 903119. ISBN: 10.1117/12.2052837.
  16. Grebenyuk AA. Signal formation and imaging properties in interference [In Russian]. The Dissertation for the Candidate's degree of Physical-Mathematical Sciences. Saratov; 2014.
  17. Born M, Wolf E. Principles of optics: Electromagnetic theory of propagation, interference and diffraction of light. 7th ed. Cambridge: Cambridge University Press; 1999. ISBN: 978-0521642224.
  18. Mandel L, Wolf E. Optical coherence and quantum optics. Cambridge: Cambridge University Press; 1995. ISBN: 978-0-521417112.
  19. Grebenyuk AA, Ryabukho VP. Theory of imaging and coherence effects in full-field optical coherence microscopy. In Book: Dubois A, ed. Handbook of full-field optical coherence microscopy: Technology and applications. Chap 2. Singapore: Pan Stanford Publishing; 2016: 53-89. ISBN: 978-981-4669-16-0.
  20. Grebenyuk AA, Tarakanchikova YV, Ryabukho VP. An off-axis digital holographic microscope with quasimono chromatic partially spatially coherent illumination in transmission. J Opt 2014; 16(10): 105301. DOI: 10.1088/2040-8978/16/10/105301.
  21. Grebenyuk AA, Klychkova DM, Ryabukho VP. Numerical focusing and the field of view in interference microscopy [In Russian]. Computer Optics 2018; 42(1): 28-37. DOI: 10.18287/2412-6179- 2018-42-1-28-37.
  22. Ryabukho VP, Lyakin DV, Grebenyuk AA, Klykov SS. Wiener-Khintchin theorem for spatial coherence of optical wave field. J Opt 2013; 15(5): 025405. DOI: 10.1088/2040-8978/15/2/025405.
  23. Gonzalez RC, Woods RE. Digital image processing. 3rd ed. Upper Saddle River, NJ: Pearson Prentice Hall; 2008. ISBN: 978-0-13-168728-8.
  24. Goodman JW. Introduction to Fourier optics. 2nd ed. New York: McGraw-Hill; 1996. ISBN: 978-0-07-024254-8.
  25. Maréchal А, Françon M. Diffraction, structure des images: Influence de la cohérence de la lumière. Paris: Revue d'Optique Theorique et Instrumentale, 1960.

© 2009, IPSI RAS
151, Molodogvardeiskaya str., Samara, 443001, Russia; E-mail: ; Tel: +7 (846) 242-41-24 (Executive secretary), +7 (846) 332-56-22 (Issuing editor), Fax: +7 (846) 332-56-20