Morphological estimates of image complexity and information content
Brianskiy S.A., Vizilter Yu.V.


Moscow Aviation Institute, Moscow, Russia,
 FGUP “GosNIIAS, Moscow, Russia


We propose new morphological conditional estimates of image complexity and information content as well as morphological mutual information. These morphological estimates take into account both the number and the shape of image tessellation (mosaic) regions. We provide such a region shape account via joint use of mosaic image shape models based on the morphological image analysis (MIA) proposed by Yu. Pyt’ev and morphological thickness maps from the mathematical morphology (MM) introduced by J. Serra. Mathematical properties of morphological thickness maps are explored w.r.t. properties of structured elements, and corresponding properties of the proposed morphological image complexity and information content are proved. Some experimental results on image shape comparison in terms of shape complexity and information are reported. Open access images from a Kimia99 database  are utilized for these experiments.

mathematical morphology, shape complexity, shape information.

Brianskiy SA, Vizilter YuV. Morphological conditional estimates of image complexity and information content. Computer Optics 2018; 42(3): 501-509. DOI: 10.18287/2412-6179-2018-42-3-501-509.


  1. Pyt’ev YuP, Chulikov АI. Methods of morphological analysis of images [In Russian]. Moscow: “Fizmatlit” Publisher; 2010. ISBN: 978-5-9221-1225-3.
  2. Serra JP. Image analysis and mathematical morphology. Orlando, USA: Academic Press Inc; 1982. ISBN: 978-0-12637240-3.
  3. Sidyakin SV. Morphological pattern spectra algorithm development for digital image and video sequences analysis [In Russian] The Thesis for the Candidate’s Degree in Technical Sciences. Moscow; 2013.
  4. Maragos P. Pattern spectrum, multiscale shape representation. IEEE Transactions on Pattern Analysis and Machine Intelligence 1989; 11(7): 701-716. DOI: 10.1109/34.192465.
  5. Vizilter YuV, Sidyakin SV. Parametric and morphological spectra [In Russian]. Computer optics 2015; 39(1): 109-118. DOI: 10.18287/0134-2452-2015-39-1-109-118.
  6. Mestetskiy LМ. Continuous morphology of binary images: figures, skeletons, circulars [In Russian]. Moscow: “Fizmatlit” Publisher; 2009. ISBN: 978-5-9221-1050-1.
  7. Lomov NA, Mestetskiy LM. Area of the disk cover as an image shape descriptor. Computer Optics 2016; 40(4): 516-525. DOI: 10.18287/2412-6179-2016-40-4-516-525.
  8. Chochia PA, Milukova OP. Comparison of two-dimensional variations in the context of the digital image complexity assessment. Journal of Communications Technology and Electronics 2015; 60(12): 1432-1440. DOI: 10.1134/S1064226915120049.
  9. Yu H, Winkler S. Image complexity and spatial information. Fifth International Workshop on Quality of Multimedia Experience (QoMEX) 2013: 12-17. DOI: 10.1109/QoMEX.2013.6603194.
  10. Vizilter YuV, Gorbatsevich VS, Rubis AYu, Zeltov SYu. Shape-based image matching using heat kernels and diffusion maps. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences 2014; XL-3: 357-364. DOI: 10.5194/isprsarchives-XL-3-357-2014.
  11. Binary image dataset Kimia99. Source: <>.

© 2009, IPSI RAS
151, Molodogvardeiskaya str., Samara, 443001, Russia; E-mail: ; Tel: +7 (846) 242-41-24 (Executive secretary), +7 (846) 332-56-22 (Issuing editor), Fax: +7 (846) 332-56-20