Diffractive optical elements for the generating cylindrical beams of different orders
Degtyarev S.A., Savelyev D.A., Karpeev S.V.


IPSI RAS – Branch of the FSRC “Crystallography and Photonics” RAS, Molodogvardeyskaya 151, 443001, Samara, Russia;
Samara National Research University, Moskovskoye shosse, 34, 443086, Samara, Russia


The paper proposes a method for calculating the phase function of subwavelength diffractive optical elements. The method is based on diffraction gratings with a varying period for generating vector beams with arbitrary-order cylindrical polarization. Formulas for the phase function of the grating are obtained with due regard for the period variation for increasing the efficiency of the polarization conversion of the incident beam. The obtained phase functions are supposed to be used for creating polarization-conversion diffractive optical elements for noise-resistant optical communication systems.

subwavelength structures, cylindrical beams, polarization conversion, finite element method

Degtyarev SA, Savelyev DA, Karpeev SV. Diffractive optical elements for generating cylindrical beams of different orders. Computer Optics 2019; 43(3): 347-355. DOI: 10.18287/2412-6179-2019-43-3-347-355.


  1. Wang F, Liu X, Cai Y. Propagation of partially coherent beam in turbulent atmosphere: a review (Invited review). Progress In Electromagnetics Research 2015; 150: 123-143. DOI: 10.2528/PIER15010802.
  2. Chen B, Chen Z, Pu J. Propagation of partially coherent Bessel-Gaussian beams in turbulent atmosphere. Optics & Laser Technology 2008; 40(6): 820-827. DOI: 10.1016/j.optlastec.2007.11.011.
  3. Soifer VA, Korotkova О, Khonina SN, Shchepakina ЕА. Vortex beams in turbulent media: review. Computer Optics 2016; 40(5): 605-624. DOI: 10.18287/2412-6179-2016-40-5-605-624.
  4. Wang J. Data information transfer using complex optical fields: a review and perspective. Chinese Optics Letters 2017; 15(3): 030005. DOI: 10.3788/COL201715.030005.
  5. Chen C, Yang H, Kavehrad M, Zhou Z. Propagation of radial Airy array beams through atmospheric turbulence. Optics and Lasers in Engineering 2014; 52: 106-114. DOI: 10.1016/j.optlaseng.2013.07.003.
  6. Gbur G, Tyson R. Vortex beam propagation through atmospheric turbulence and topological charge conservation. JOSA A 2008; 25(1): 225-230. DOI: 10.1364/JOSAA.25.000225.
  7. Milione G, Nguyen ThA, Leach J, Nolan DA, Alfano RR. Using the nonseparability of vector beams to encode information for optical communication. Opt Lett 2015; 40(21): 4887-4890. DOI: 10.1364/OL.40.004887.
  8. Khonina S, Degtyarev S, Savelyev D, Ustinov A. Focused, evanescent, hollow, and collimated beams formed by microaxicons with different conical angles. Opt Express 2017; 25(16): 19052-19064. DOI: 10.1364/OE.25.019052.
  9. Savelyev DA, Degtyarev SA. Investigation of vortex evanescent fields in the near zone of fiber taper and sub-wavelength diffractive axicon. Proc SPIE 2018; 10774: 107740J. DOI: 10.1117/12.2318740.
  10. Khonina SN, Savelyev DA, Kazanskiy NL. Analysis of polarisation states at sharp focusing. Optik – International Journal for Light and Electron Optics 2016; 127(6): 3372-3378. DOI: 10.1016/j.ijleo.2015.12.108.
  11. Hsu W-L, Balakrishnan K, Ibn-Elhaj M, Pau S. Infrared liquid crystal polymer micropolarizer. Appl Opt 2014; 53(23): 5252-5258. DOI: 10.1364/AO.53.005252.
  12. Bomzon ZE, Biener G, Kleiner V, Hasman E. Space-variant Pancharatnam–Berry phase optical elements with computer-generated subwavelength gratings. Optics letters 2002; 27(13): 1141-1143. DOI: 10.1364/OL.27.001141.
  13. Niv A, Biener G, Kleiner V, Hasman E. Propagation-invariant vectorial Bessel beams obtained by use of quantized Pancharatnam–Berry phase optical elements. Optics letters 2004; 29(3): 238-240. DOI: 10.1364/OL.29.000238.
  14. Maurer C, Jesacher A, Fürhapter S, Bernet S, Ritsch-Marte M. Tailoring of arbitrary optical vector beams. New Journal of Physics 2007; 9(78): 1-20. DOI: 10.1088/1367-2630/9/3/078.
  15. Khonina SN, Karpeev SV, Alferov SV. Polarization converter for higher-order laser beams using a single binary diffractive optical element as beam splitter. Optics Letters 2012; 37(12): 2385-2387. DOI: 10.1364/OL.37.002385.
  16. Beresna M, Gecevičius M, Kazansky PG. Polarization sensitive elements fabricated by femtosecond laser nanostructuring of glass. Optical Materials Express 2011; 1(4): 783-795. DOI: 10.1364/OME.1.000783.
  17. Shu W, Liu Y, Ke Y, Ling X, Liu Z, Huang B, Luo H, Yin X. Propagation model for vector beams generated by metasurfaces. Opt Express 2016; 24(18): 21177-21189. DOI: 10.1364/OE.24.021177.
  18. Nesterov AV, Niziev VG, Yakunin VP. Generation of high-power radially polarized beam. J Phys D: Appl Phys 1999; 32(22): 2871-2875. DOI: 10.1088/0022-3727/32/22/307.
  19. Kildishev AV, Boltasseva A, Shalaev VM.  Planar photonics with metasurfaces. Science 2013; 339(6125): 1232009. DOI: 10.1126/science.1232009.
  20. Remnev MA, Klimov VV. Metasurfaces: a new look at Maxwell's equations and new ways to control light. Physics-Uspekhi 2018; 61(2): 157-190. DOI: 10.3367/UFNe.2017.08.038192.
  21. Levy U, Tsai C-H, Pang L, Fainman Y. Engineering space-variant inhomogeneous media for polarization control. Opt Lett 2004; 29(15): 1718-1720. DOI: 10.1364/OL.29.001718.
  22. Stafeev SS, Kotlyar VV, Nalimov AG, Kotlyar MV, O’Faolain L. Subwavelength gratings for polarization con-version and focusing of laser light. Photonics and Nanostructures-Fundamentals and Applications 2017; 27: 32-41. DOI: 10.1016/j.photonics.2017.09.001.
  23. Kotlyar VV, Nalimov AG. A vector optical vortex generated and focused using a metalens. Computer Optics 2017; 41(5): 645-654. DOI: 10.18287/2412-6179-2017-41-5-645-654.
  24. Lalanne P, Lemercier-Lalanne D. On the effective medium theory of subwave-length periodic structures. J Mod Opt 1996; 43: 2063-2085. DOI: 10.1080/09500349608232871.

© 2009, IPSI RAS
151, Molodogvardeiskaya str., Samara, 443001, Russia; E-mail: journal@computeroptics.ru ; Tel: +7 (846) 242-41-24 (Executive secretary), +7 (846)332-56-22 (Issuing editor), Fax: +7 (846) 332-56-20