Measurement of the orbital angular momentum of an astigmatic Hermite–Gaussian beam
Kotlyar V.V., Kovalev A.A., Porfirev A.P.


IPSI RAS – Branch of the FSRC “Crystallography and Photonics” RAS, Molodogvardeyskaya 151, 443001, Samara, Russia;
Samara National Research University, Moskovskoye shosse, 34, 443086, Samara, Russia


Here we study three different types of astigmatic Gaussian beams, whose complex amplitude in the Fresnel diffraction zone is described by the complex argument Hermite polynomial of the order (n, 0). The first type is a circularly symmetric Gaussian optical vortex with and a topological charge n after passing through a cylindrical lens. On propagation, the optical vortex "splits" into n first-order optical vortices. Its orbital angular momentum per photon is equal to n. The second type is an elliptical Gaussian optical vortex with a topological charge n after passing through a cylindrical lens. With a special choice of the ellipticity degree (1: 3), such a beam retains its structure upon propagation and the degenerate intensity null on the optical axis does not “split” into n optical vortices. Such a beam has fractional orbital angular momentum not equal to n. The third type is the astigmatic Hermite-Gaussian beam (HG) of order (n, 0), which is generated when a HG beam passes through a cylindrical lens. The cylindrical lens brings the orbital angular momentum into the original HG beam. The orbital angular momentum of such a beam is the sum of the vortex and astigmatic components, and can reach large values (tens and hundreds of thousands per photon). Under certain conditions, the zero intensity lines of the HG beam "merge" into an n-fold degenerate intensity null on the optical axis, and the orbital angular momentum of such a beam is equal to n. Using intensity distributions of the astigmatic HG beam in foci of two cylindrical lenses, we calculate the normalized orbital angular momentum which differs only by 7 % from its theoretical orbital angular momentum value (experimental orbital angular momentum is –13,62, theoretical OAM is –14.76).

orbital angular momentum, Hermite-Gaussian beam, astigmatism, cylindrical lens, Hermite polynomial

Kotlyar VV, Kovalev AA, Porfirev AP. Measurement of the orbital angular momentum of an astigmatic Hermite–Gaussian beam. Computer Optics 2019; 43(3): 356-367. DOI: 10.18287/2412-6179-2019-43-3-356-367.


  1. Grier D. A revolution in optical manipulation. Nature 2003; 424: 810-816.
  2. Kuga T, Torii Y, Shiokawa N, Hirano T. Novel optical trap of atoms with a doughnut beam. Phys Rev Lett 1997; 78: 4713-4716.
  3. Bernet S, Jesacher A, Furhapter S, Maurer C, Ritsch-Marte M. Quantitative imaging of complex samples by spiral phase contrast microscopy. Opt Express 2006; 14: 3792-3805.
  4. Willig KI, Rizzoli SO, Westphal V, Jahn R, Hell SW. STED microscopy reveals that synaptotagmin remains clustered after synaptic vesicle exocytosis. Nature 2006; 440: 935-939.
  5. Wang J, Yang J, Fazal IM, Ahmed N, Yan Y, Huang H, Ren Y, Yue Y, Dolinar S, Tur M, Willner AE. Terabit free-space data transmission employing orbital angular momentum multiplexing. Nat Photon 2012; 6: 488-496.
  6. Mair A, Vaziri A, Weihs G, Zeilinger A. Entanglement of the orbital angular momentum states of photons. Nature 2001; 412: 313-316.
  7. Courtial J, Dholakia K, Allen L, Padgett MJ. Gaussian beams with very high orbital angular momentum. Opt Commun 1997; 144: 210-213.
  8. Abramochkin E, Volostnikov V. Beam transformations and nontransformed beams. Opt Commun 1991; 83(1-2): 123-135. DOI: 10.1016/0030-4018(91)90534-K.
  9. Izdebskaya Y, Fadeyeva T, Shvedov V, Volyar A. Vortex-bearing array of singular beams with very high orbital angular momentum. Opt Lett 2006; 31(17): 2523-2525.
  10. Li A, Zhang M, Liang G, Li X, Chen X, Cheng C. Generation of high-order optical vortices with asymmetrical pinhole plates under plane wave illumination. Opt Express 2013; 21(13): 15755-15764.
  11. Krenn M, Tischler N, Zeilinger A. On small beams with large topological charge. New J Phys 2016; 18: 033012.
  12. Zheng S, Wang J. Measuring orbital angular momentum (OAM) states of vortex beams with annular gratings. Sci Rep 2017; 7: 40781.
  13. Vieira J, Trines RMGM, Alves EP, Fonseca RA, Mendonca JT, Bingham R, Norreys P, Silva LO. High orbital angular momentum harmonic generation. Phys Rev Lett 2016; 117: 265001.
  14. Chen Y, Fang Z, Ren Y, Gong L, Lu R. Generation and characterization of a perfect vortex beam with a large topological charge through a digital micro-mirror device. Appl Opt 2015; 54(27): 8030-8035.
  15. Jesacher A, Furhapter S., Maurer C, Bernet S, Ritsch-Marte M. Holographic optical tweezers for object manipulations at an air-liquid surface. Opt Express 2006; 14(13): 6342-6352.
  16. Fickler R, Lapkiewicz R, Plick WN, Krenn M, Schaeff C, Ramelow S, Zeilinger A. Quantum entanglement of high angular momenta. Science 2012; 338: 640-643.
  17. Campbell G, Hage B, Buchler B, Lam PK. Generation of high-order optical vortices using directly machined spiral phase mirrors. Appl Opt 2012; 51(7): 873-876.
  18. Shen Y, Campbell GT, Hage B, Zou H, Buchler BC, Lam PK. Generation and interferometric analysis of high charge optical vortices. J Opt 2013; 15(4): 044005.
  19. Mafakheri E, Tavabi AH, Lu P, Balboni R, Venturi F, Menozzi C, Gazzadi GC, Frabboni S, Sit A, Dunin-Borkowski RE, Karimi E. Realization of electron vortices with large orbital angular momentum using miniature holograms fabricated by electron beam lithography. Appl Phys Lett 2017; 110: 093113.
  20. Fickler R, Campbell G, Buchler B, Lam PK, Zeilinger A. Quantum entanglement of angular momentum states with quantum number up to 10010. Proc Natl Acad Sci 2016; 113(48): 13642-13647.
  21. Kotlyar VV, Kovalev AA. Vortex-free laser beam with an orbital angular momentum. Computer Optics 2017; 41(4): 573-576. DOI: 10.18287/2412-6179-2017-41-4-573-576.
  22. Kotlyar VV, Kovalev AA, Porfirev AP. Astigmatic laser beams with a large orbital angular momentum. Opt. Express 2018; 26(1): 141-156.
  23. Kotlyar VV, Kovalev AA, Pofirev AP. Astigmatic transforms of an optical vortex for measurement of its topological charge. Appl Opt 2017; 56(14): 4095-4104. DOI: 10.1364/AO.56.004095.
  24. Molina-Terriza G, Recolons J, Torres JP, Torner L, Wright EM. Observation of the dynamical inversion of the topological charge of an optical vortex. Phys Rev Lett 2001; 87(2): 023902.
  25. Prudnikov AP, Brychkov YA, Marichev OI. Integrals and Series, Special Functions. New York: Gordon and Breach; 1981.
  26. Abramowitz M, Stegun IA. Handbook of mathematical functions: With formulas, graphs, and mathematical tables. New York: Dover Publications Inc; 1979.
  27. Bekshaev A, Soskin M, Vasnetsov M. Optical vortex symmetry breakdown and decomposition of the orbital angular momentum of light beams. J Opt Soc Am A 2003; 20(8): 1635-1643.
  28. Fadeyeva TA, Rubass AF, Aleksandrov RV, Volyar AV. Does the optical angular momentum change smoothly in fractional-charged vortex beams? J Opt Soc Am B 2014; 31(4): 798-805.
  29. Alperin SN, Niederriter RD, Gopinath JT, Siemens ME. Quantitative measurement of the orbital angular momentum of light with a single, stationary lens. Opt Lett 2016; 41(21): 5019-5022.
  30. Kotlyar VV, Kovalev AA, Porfirev AP. Methods for determining the orbital angular momentum of a laser beam. Computer Optics 2019; 43(1): 42-53. DOI: 10.18287/2412-6179-2019-43-1-42-53.
  31. Goorden SA, Bertolotti J, Mosk AP. Superpixel-based spatial amplitude and phase modulation using a digital micromirror device. Opt Express 2014; 22: 17999-18009.
  32. CHR71000. Ultra high resolution 71 megapixels CMOS image sensor. Source: <>.

© 2009, IPSI RAS
151, Molodogvardeiskaya str., Samara, 443001, Russia; E-mail: ; Tel: +7 (846) 242-41-24 (Executive secretary), +7 (846)332-56-22 (Issuing editor), Fax: +7 (846) 332-56-20