Transmission and detection of informationally loaded beams of wavelength 1530 nm in a random fluctuating medium
Karpeev S.V., Podlipnov V.V., Ivliev N.A., Paranin V.D.


IPSI RAS – Branch of the FSRC “Crystallography and Photonics” RAS, Molodogvardeyskaya 151, 443001, Samara, Russia;
Samara National Research University, Moskovskoye shosse, 34, 443086, Samara, Russia


The propagation of variously structured vortex beams of wavelength 1530 nm through a random distorting medium was experimentally investigated. An effect of the aerosol barrier on the scintillation index of the beam was analyzed. The possibility of the correlation detection of the presence of a vortex phase under the beam wandering caused by a flow of warm air was experimentally investigated.

information loaded beams, optical vortices, telecommunication wavelength, random fluctuations of the optical medium, scintillation index

Karpeev SV, Podlipnov VV, Ivliev NA, Paranin VD. Transmission and detection of informationally loaded beams of wavelength 1530 nm in a random fluctuating medium. Computer Optics 2019; 43(3): 368-375. DOI: 10.18287/2412-6179-2019-43-3-368-375.


  1. Wang F, Liu X, Cai Y. Propagation of partially coherent beam in turbulent atmosphere: a review (invited review). Progress In Electromagnetics Research 2015; 150: 123-143. DOI: 10.2528/PIER15010802.
  2. Korotkova O. Random light beams: theory and applications. Boca Raton, FL: CRC Press; 2013. ISBN: 978-1-4398-1950-0.
  3. Majumdar AK, Ricklin JC. Free-space laser communications: principles and advances. New York: Springer Science & Business Media; 2008. ISBN: 978-0-387-28652-5.
  4. Mishchenko MI. Electromagnetic scattering by particles and particle groups: An introduction. Cambridge: Cam-bridge University Press; 2014. ISBN: 978-0-521-51992-2.
  5. Tatarskii VI. Wave propagation in a turbulent medium. New York: McGraw-Hill; 1961.
  6. Dainty JC, Ennos AE, Françon M, Goodman JW, McKechnie TS, Parry G. Laser speckle and related phenomena. Berlin: Springer, 1975. ISBN: 978-3-540-07498-4.
  7. Ishimaru A. Wave propagation and scattering in random media. New York: Academic Press; 1978. ISBN: 978-0-12-374701-3.
  8. Fante RL. Wave propagation in random media: a systems approach. Progress in Optics 1985; 22: 341-398. DOI: 10.1016/S0079-6638(08)70152-5.
  9. Andrews LC, Phillips RL. Laser beam propagation through random media. Bellingham, WA: SPIE Optical Engineering Press; 1998. ISBN: 978-0-819-42787-8.
  10. Paranin VD, Karpeev SV, Khonina SN. Control of the formation of vortex Bessel beams in uniaxial crystals by varying the beam divergence. Quantum Electronics 2016; 46(2): 163-168. DOI: 10.1070/QEL15880.
  11. Kotlyar VV, Khonina SN, Soifer VA, Algorithm for the generation of non-diffracting Bessel modes. J Mod Opt 1995; 42(6): 1231-1239.
  12. Gbur G, Tyson RK. Vortex beam propagation through atmospheric turbulence and topological charge conservation. J Opt Soc Am A 2008; 25(1): 225-230. DOI: 10.1364/JOSAA.25.000225.
  13. Cai Y, He S. Propagation of various dark hollow beams in a turbulent atmosphere. Opt Express 2006; 14(4): 1353-1367. DOI: 10.1364/OE.14.001353.
  14. Eyyuboğlu HT. Propagation of higher order Bessel-Gaussian beams in turbulence. Appl Phys B 2007; 88(2): 259-265. DOI: 10.1007/s00340-007-2707-6.
  15. Chu X. Evolution of an Airy beam in turbulence. Opt Lett 2011; 36(14): 2701-2703. DOI: 10.1364/OL.36.002701.
  16. Du X, Zhao D, Korotkova O. Changes in the statistical properties of stochastic anisotropic electromagnetic beams on propagation in the turbulent atmosphere. Opt Express 2007; 15(25): 16909-16915. DOI: 10.1364/OE.15.016909.
  17. Wang H, Liu D, Zhou Z. The propagation of radially polarized partially coherent beam through an optical system in turbulent atmosphere.Appl Phys B 2010; 101(1): 361-369. DOI: 10.1007/s00340-010-4106-7.
  18. Wang T, Pu J, Chen Z. Beam-spreading and topological charge of vortex beams propagating in a turbulent atmosphere. Opt Commun 2009; 282(7): 1255-1259. DOI: 10.1016/j.optcom.2008.12.027.
  19. Malik M, O’Sullivan M, Rodenburg B,Mirhosseini M, Leach J, Lavery MPJ, Padgett MJ, Boyd RW. Influence of atmospheric turbulence on optical communications using orbital angular momentum for encoding. Opt Express 2012; 20(12): 13195-13200. DOI: 10.1364/OE.20.013195.
  20. Lavery MPJ, Robertson DJ, Berkhout GCG, Love GD, Padgett MJ, Courtial J. Refractive elements for the measurement of the orbital angular momentum of a single photon. Opt Express 2012; 20(3): 2110-2115. DOI: 10.1364/OE.20.002110.
  21. Aksenov VP, Kolosov VV, Filimonov GA, Pogutsa CE. Orbital angular momentum of a laser beam in a turbulent medium: preservation of the average value and variance of fluctuations. J Opt 2016; 18(5): 054013. DOI: 10.1088/2040-8978/18/5/054013.
  22. Khonina SN, Karpeev SV, Paranin VD. A technique for simultaneous detection of individual vortex states of Laguerre–Gaussian beams transmitted through an aqueous suspension of microparticles. Optics and Lasers in Engineering 2018; 105: 68-74. DOI: 10.1016/j.optlaseng.2018.01.006.
  23. Soskin MS, Vasnetsov MV. Singular optics. In book: Wolf E, ed. Progress in optics. Chap 4. Amsterdam, North Holland: Elsevier Science; 2001. DOI: 10.1016/S0079-6638(01)80018-4.
  24. Bozinovic N, Yue Y, Ren Y, Tur M, Kristensen P, Huang H, Willer AE, Ramachandran S. Terabit-scale orbital angular momentum mode division multiplexing in fibers. Science 2013; 340(6140): 1545-1548. DOI: 10.1126/scien­ce.1237861.
  25. Gibson G, Courtial J, Padgett MJ, Vasnetsov M, Pas’ko V, Barnett SM, Franke-Arnold S. Free-space information transfer using light beams carrying orbital angular momentum. Opt Express 2004; 12(22): 5448-5456. DOI: 10.1364/OPEX.12.005448.
  26. Wang J, YangJ-Y, Fazal IM, Ahmed N, Yan Y, Huang H, Ren Y, Yue Y, Dolinar S, Tur M,Willner AE. Terabit free-space data transmission employing orbital angular momentum multiplexing. Nat Photonics 2012; 6: 488-496. DOI: 10.1038/nphoton.2012.138.
  27. Khonina SN. Vortex laser beams and their applying. In book: Soifer VA, ed. Nanophotonics and its application in ERS systems [In Russian]. Chap 4. Samara: "Novaya Tehnika" Publisher; 2016. ISBN: 978-5-88940-140-7.
  28. Soifer VA, Korotkova О, Khonina SN, Shchepakina ЕА. Vortex beams in turbulent media: Review. Computer Optics 2016; 40(5): 605-624. DOI: 10.18287/2412-6179-2016-40-5-605-624.
  29. Porfirev AP, Kirilenko MS, Khonina SN, Skidanov RV, Soifer VA. Study of propagation of vortex beams in aerosol optical medium. Applied Optics 2017; 56(11): E8-E15. DOI: 10.1364/AO.56.0000E8.
  30. Berezny AE, Karpeev SV, Uspleniev GV. Computer-generated holographic optical elements produced by photolithography. Optics and Lasers in Engineering 1991; 15(5): 331-340. DOI: 10.1016/0143-8166(91)90020-T.
  31. Khonina SN, Karpeev SV, Alferov SV. Polarization converter for higher-order laser beams using a single binary diffractive optical element as beam splitter. Opt Lett 2012; 37(12): 2385-2387. DOI: 10.1364/OL.37.002385.
  32. Karpeev SV, Paranin VD, Kirilenko MS. Comparison of the stability of Laguerrе–Gauss vortex beams to random fluctuations of the optical environment. Computer Optics 2017; 41(2): 208-217. DOI: 10.18287/2412-6179-2017-41-2-208-217.
  33. Peleg A, Moloney JV. Scintillation index for two Gaussian laser beams with different wavelengths in weak atmospheric turbulence. J Opt Soc Am A 2006; 23(12): 3114-3122. DOI: 10.1364/JOSAA.23.003114.
  34. Gurvich AS, Kon AI, Mironov VL, Khmelevtsov SS. Laser radiation in a turbulent atmosphere [In Russian]. Moscow: "Nauka" Publisher; 1976.
  35. Lukin VP. Correction of random angular displacements of optical beams. Soviet Journal of Quantum Electronics 1980; 10(6): 727-732. DOI: 10.1070/QE1980v010n06ABEH010279.
  36. Soifer VA, ed. Methods for computer Design of Diffractive Optical Elements [In Russian]. New York: “John Willey & Sons, Inc” Publisher; 2002. ISBN: 978-0-471-09533-0.
  37. Khonina SN, Kotlyar VV, Soifer VA, Pääkkönen P, Simonen J, Turunen J. An analysis of the angular momentum of a light field in terms of angular harmonics. J Mod Opt 2001; 48(10): 1543-1557. DOI: 10.1080/09500340108231783.

© 2009, IPSI RAS
151, Molodogvardeiskaya str., Samara, 443001, Russia; E-mail: ; Tel: +7 (846) 242-41-24 (Executive secretary), +7 (846)332-56-22 (Issuing editor), Fax: +7 (846) 332-56-20