(43-4) 01 * << * >> * Russian * English * Content * All Issues

Shaping and processing the vortex spectra of singular beams with anomalous orbital angular momentum

A.V. Volyar1, M.V. Bretsko1, Ya.E. Akimova1, Yu.A. Egorov1

Physics and Technology Institute of V.I. Vernadsky Crimean Federal University, Academician Vernadsky 4, 295007, Republic of Crimea, Simferopol, Russia

 PDF, 1458 kB

DOI: 10.18287/2412-6179-2019-43-4-517-527

Pages: 517-527.

Full text of article: Russian language.

The article examines physical mechanisms responsible for shaping the vortex avalanche induced by a weak perturbation of the holographic lattice of a combined vortex beam. For this, we have developed a new technique for measuring the degenerate spectra of optical vortices and orbital angular momentum of combined singular beams. The technique is based on measuring the intensity moments of higher orders of a beam containing vortices with both positive and negative topological charges. The appropriate choice of the mode amplitudes in the combined beam enables us to form orbital angular momentum anomalous spectral regions in the form of resonance dips and bursts. Since the intensity moments of a vortex mode with positive and negative topological charges are the same (the moments are degenerate) for an axially symmetric beam, the measurements are carried out in the plane of the double focus of a cylindrical lens. The calibration measurements show that the experimental error is not higher than 4.5 %. We also reveal that the dips and bursts in the orbital angular momentum spectrum are caused by the vortex avalanche induced by weak perturbations of the holographic grating relief responsible for the beam shaping. The appearance of the orbital angular momentum dips or bursts is controlled by the relation between the energy fluxes in the vortex avalanche with positive or negative topological charges.

diffractive optics, image processing, optical vortices, orbital angular momentum, moments of intensity

Volyar AV, Bretsko MV, Akimova YaE, Egorov YuA. Shaping and processing the vortex spectra of singular beams with anomalous orbital angular momentum. Computer Optics 2019; 43(4): 517-527. DOI: 10.18287/2412-6179-2019-43-4-517-527.


  1. Soifer VA, Golub MA. Laser beam mode selection by computer-generated holograms. Boca Raton: CRC Press; 1994. ISBN: 978-0-8493-2476-5.
  2. Kotlyar VV, Kovalev AA, Porfirev AP. Vortex laser beams. Boca Raton, London, New York: Taylor & Francis Groop LLC; 2018. ISBN: 978-1-138-54211-2.
  3. Berry MV. Paraxial beams of spinning light. Proc SPIE 1998; 3487: 6-11. DOI: 10.1117/12.317704.
  4. Khonina SN, Kotlyar VV, Soifer VA, Paakkonen P, Turunen J. Measuring the light field orbital angular momentum using DOE. Optical Memory and Neural Networks 2001; 10(4): 241-255.
  5. Khonina SN, Kotlyar VV, Soifer VA, Jefimovs K, Turunen J. Generation and selection of laser beams represented by a superposition of two angular harmonics. J Mod Opt 2004; 51(5): 761-773. DOI: 10.1080/09500340408235551.
  6. Khonina SN, Kazanskiy NL, Soifer VA. Optical vortices in a fiber: mode division multiplexing and multimode selfimaging. In Book: Yasin M, Harun SW, Arof H, eds. Recent progress in optical fiber research. Rijeka, Croatia: InTech Open; 2012; Ch 15: 327-352. DOI: 10.5772/28067.
  7. Gbur GJ. Singular optics. New York: CRC Press; 2016. ISBN: 978-1-4665-8077-0.
  8. Lavery MPJ, Berkhout GCG, Courtial J, Padgett MJ. Measurement of the light orbital angular momentum spectrum using an optical geometric transformation. J Opt 2011; 13(6): 064006.
  9. Berkhout GCG, Lavery MPJ, Courtial J, Beijersbergen MW, Padgett MJ. Efficient sorting of orbital angular momentum states of light. Phys Rev Lett 2010; 105: 153601.
  10. Volyar A, Bretsko M, Akimova Ya, Egorov Yu. Measurement of the vortex spectrum in a vortex-beam array without cuts and gluing of the wavefront. Opt Lett 2018; 43(22): 5635-5638. DOI: 10.1364/OL.43.005635.
  11. Alperin SN, Niederiter RD, Gopinath JT, Siements KE. Quantitative measurement of the orbital angular momentum of light with a single, stationary lens. Opt Lett 2016; 41(21): 5019-5022. DOI: 10.1364/OL.41.005019.
  12. Alperin SN, Siements KE. Angular momentum of topologically structured darkness. Phys Rev Lett 2017; 119: 203902.
  13. Kotlyar VV, Kovalev AA, Porfirev AP. Methods for determining the orbital angular momentum of a laser beam. Computer Optics 2019; 43(1): 42-53. DOI: 10.18287/2412-6179-2019-43-1-42-53.
  14. Flusser J, Tomáš S, Zitová B. Moments and moment invariants in pattern recognition. New York: John Wiley & Sons; 2009.
  15. Fu S, Gao Ch. Influences of atmospheric turbulence effects on the orbital angular momentum spectra of vortex beams. Photon Res 2016; 4(5): B1-B4.
  16. Kaiser T, Flamm D, Schröter S, Duparré M. Complete modal decomposition for optical fibers using CGH-based correlation filters. Opt Express 2009; 17: 9347-9356.
  17. Kotlyar VV, Kovalev AA, Porfirev AP. Astigmatic transforms of an optical vortex for measurement of its topological charge. Appl Opt 2017; 56(14): 4095-4104. DOI: 10.1364/AO.56.004095.
  18. Abramochkin E, Razueva E, Volostnikov V. General astigmatic transform of Hermite–Laguerre–Gaussian beams. J Opt Soc Am A 2010; 27(11): 2506-2513.
  19. Prudnikov AP, Brychkov YA, Marichev OI. Integrals and series, elementary functions. New York: Gordon and Breach; 1986.
  20. Volyar AV, Bretsko MV, Akimova YaE, Egorov YuA. Beyond the light intensity or intensity moments and measurements of the vortex spectrum in complex light beams. Computer Optics 2018; 42(5): 736-743. DOI: 10.18287/2412-6179-2017-42-5-736-743.
  21. Volyar AV, Bretsko MV, Akimova YaE, Egorov Yu.A. Avalanche instability of the orbital angular momentum higher order optical vortices. Computer Optics 2019; 43(1): 14-24. DOI: 10.18287/2412-6179-2019-43-1-14-24.
  22. Volyar AV, Egorov YuA. Super pulses of orbital angular momentum in fractional-order spiroid vortex beams. Opt Lett 2018; 43(1): 74-77. DOI: 10.1364/OL.43.000074.
  23. Kotlyar VV, Kovalev AA, Porfirev AP. Hermite-Gaussian laser beams with orbital angular momentum. Computer Optics 2014; 38(4): 651-656.


© 2009, IPSI RAS
151, Molodogvardeiskaya str., Samara, 443001, Russia; E-mail: ko@smr.ru ; Tel: +7 (846) 242-41-24 (Executive secretary), +7 (846) 332-56-22 (Issuing editor), Fax: +7 (846) 332-56-20