(43-5) 05 * << * >> * Russian * English * Content * All Issues

Determination of microrelief of the sample by singular beams superposition

B. Sokolenko1, N. Shostka2, O. Karakchieva2, A.V. Volyar1, D. Poletayev1

V.I. Vernadsky Crimean Federal University, Institute of Physics and Technology,  
295007, Vernadsky av., Simferopol, Russia,
V.I. Vernadsky Crimean Federal University, Scientific Research department

 PDF, 1117 kB

DOI: 10.18287/2412-6179-2019-43-5-741-746

Pages: 741-746.

Full text of article: English language.

In present paper we propose easy way to implement method of interfering vortices with opposite topological charge for the real time determination of the thickness and information about the surface of studied samples with the resolution up to 7 nanometers. The determination of the characteristics of the medial cross-section of submicron-objects becomes possible due to phase sensitivity of interfering singular beams to the slightest changes in the optical path difference between them. The dependence of rotational angle of resulting interference pattern in case of different sample thickness for two singular beams superposition is considered in detail.

optical vortex, phase, optical microscopy, singular beams, surface relief detection.

Sokolenko B, Shostka N, Karakchieva O, Volyar AV, Poletaev D. Determination of microrelief of the sample by singular beams superposition. Computer Optics 2019; 43(5): 741-746. DOI: 10.18287/2412-6179-2019-43-5-741-746.

This work was supported by the Russian Foundation for Basic Research (RFBR) and the Council of Ministers of Crimea grant № 19-42-910010, № 17-42-92020 and partially supported by the V. I. Vernadsky Crimean Federal University Development Program for 2015–2024 and Foundation for Assistance to Small Innovative Enterprises (Russian Federation) (Grant №11540GU/2017 (0033028). The results of the work were reported and discussed at the international conference “Digital singular optical optics”, September 17-21, 2018, Sevastopol.


  1. Sprague R. Surface roughness measurement using white light speckle. Appl Opt 1972; 11(12): 2811-2816. DOI: 10.1364/AO.11.002811.
  2. Sokolenko B, Poletaev D, Prisyajniuk A. Surface roughness sensing with singular vortex beams. Imaging and Applied Optics 2018: JM4A.35. DOI: 10.1364/3D.2018.JM4A.35.
  3. Huang Y-Ch, Chou Ch, Chou L-Y, Shyu J-Ch, Chang M. Polarized optical heterodyne profilometer. Jpn J Appl Phys 1998; 37(1): 351. DOI: 10.1143/JJAP.37.351.
  4. Rubinsztein-Dunlop H, et al. Roadmap on structured light. J Opt 2017; 19(1): 013001. DOI: 10.1088/2040-8978/19/1/013001.
  5. Meyer E, et al. Scanning probe microscopy: The lab on a tip. Berlin, Heidelberg: Springer-Verlag; 2003.
  6. Han R, et al. Recent advances in superresolution fluorescence imaging and its applications in biology. J Gene Genomics 2013; 40(12): 583-595. DOI: 10.1016/j.jgg.2013.11.003.
  7. Dickenson NE, et al. Near-field scanning optical microscopy: a tool for nanometric exploration of biological membranes. Anal Bioanal Chem 2010; 396(1): 31-43. DOI: 10.1007/s00216-009-3040-1.
  8. Klementieva NV, et al. The principles of super-resolution fluorescence microscopy (Review). Sovremennye tehnologii v medicine 2016; 8(2): 130-140. DOI: 10.17691/stm2016.8.2.17.
  9. Westphal V, Rizzoli SO, Lauterbach MA, Kamin D, Jahn R, Hell SW. Video-rate far-field optical nanoscopy dissects synaptic vesicle movement. Science 2008; 320(5873): 246-249. DOI: 10.1126/science.1154228.
  10. Neupane B, et al. Review of recent developments in stimulated emission depletion microscopy: applications on cell imaging. J Biomed Opt 2014; 19(8): 080901. DOI: 10.1117/1.JBO.19.8.080901.
  11. Török P, Munro P. The use of Gauss–Laguerre vector beams in STED microscopy. Opt Express 2004; 12: 3605-3617. DOI: 10.1364/OPEX.12.003605.
  12. Popiołek-Masajada A, Masajada J, Szatkowski M. Internal scanning method as unique imaging method of optical vortex scanning microscope. Opt Laser Eng 2018; 105: 201-208. DOI: 10.1016/j.optlaseng.2018.01.016.
  13. Pham QD, Hayasaki Y. Optical frequency comb profilometry using a single-pixel camera composed of digital micromirror devices. Appl Opt 2015; 54(1): A39-A44. DOI: 10.1364/AO.54.000A39.
  14. Sasaki O, Okazaki H. Sinusoidal phase modulating interferometry for surface profile measurement. Appl Opt 1986; 25(18): 3137-3140. DOI: 10.1364/AO.25.003137.
  15. Belyi V, Kroening M, Kazak N, Khilo N, Mashchenko A, Ropot P. Bessel beam based optical profilometry. Proc SPIE 2005; 5964: 59640L. DOI: 10.1117/12.624491.
  16. Vorontsov EN, Losevsky NN, Prokopova DV, Razueva EV, Samagin SA. Study on generating light fields with the intensity patterns characterized by different rotational rates. Computer Optics 2016; 40(2): 158-163. DOI: 10.18287/2412-6179-2016-40-2-158-163.
  17. Vorontsov EN, Kotova SP, Losevsky NN, et al. Effect of amplitude and phase distortions on the formation of light fields with rotating intensity distribution. Bulletin of the Lebedev Physics Institute 2018; 45(3): 71-74. DOI: 10.3103/S1068335618030028.
  18. Bouchal P, Štrbková L, Dostál Z, Bouchal Z. Vortex topographic microscopy for full-field reference-free imaging and testing. Opt Express 2017; 25(18): 21428-21443. DOI: 10.1364/OE.25.021428.
  19. Baránek M, Bouchal P, Šiler M and Bouchal Z. Aberration resistant axial localization using a self-imaging of vortices Opt Express 2015; 23: 15316-15331. DOI: 10.1364/OE.23.015316.
  20. Pavani SRP, Piestun R. High-efficiency rotating point spread functions. Opt Express 2008; 16: 3484-3489. DOI: 10.1364/OE.16.003484.
  21. Sokolenko B, Poletaev D, Halilov S. Phase shifting profilometry with optical vortices. J Phys: Conf Ser 2017; 917(6): 062047. DOI: 10.1088/1742-6596/917/6/062047.
  22. Shostka NV, Ivanov MO, Shostka VI. Controllable optical trap arrays. Tech Phys Lett 2016; 42: 944. DOI: 10.1134/S106378501609025X.
  23. Shvedov V, et al. A long-range polarization-controlled optical tractor beam. Nat Photon 2014; 8(11): 846-850. DOI: 10.1038/nphoton.2014.242.
  24. Simpson NB, Allen L, Padgett MJ. Optical tweezers and optical spanners with Laguerre–Gaussian modes. J Mod Opt 1996; 43(12): 2485-2491. DOI: 10.1080/09500349608230675.
  25. Dasgupta R, Verma RS, Ahlawat S, Chaturvedi D, Gupta PK. Long-distance axial trapping with Laguerre–Gaussian beams. Appl Opt 2011; 50(10): 1469-1476. DOI: 10.1364/AO.50.001469.
  26. Simpson SH, Hanna S. Rotation of absorbing spheres in Laguerre–Gaussian beams. J Opt Soc Am A 2009; 26(1): 173-183. DOI: 10.1364/JOSAA.26.000173.
  27. Simpson SH and Hanna S. Orbital motion of optically trapped particles in Laguerre–Gaussian beams. J Opt Soc Am A 2010; 27(9): 2061-2071. DOI: 10.1364/JOSAA.27.002061.
  28. Cao Y, Zhu T, Lv Y, Ding W. Spin-controlled orbital motion in tightly focused high-order Laguerre-Gaussian beams. Opt Express 2016; 24(4): 3377-3384. DOI: 10.1364/OE.24.003377.
  29. Kiselev AD and Plutenko DO. Optical trapping by Laguerre-Gaussian beams: Far-field matching, equilibria, and dynamics. Phys. Rev. A 2016; 94, 013804-0138019. DOI: 10.1103/PhysRevA.94.013804.
  30. Klykov SS, Fedosov IV, Tuchin VV. Dynamic analysis of optical cell trapping in the ray optics regime. Computer Optics 2015; 39(5): 694-701. DOI: 10.18287/0134-2452-2015-39-5-694-701.
  31. Porfirev AP, Kovalev AA, Kotlyar VV. Optical trapping and moving of microparticles using asymmetrical Bessel-Gaussian beams. Computer Optics 2016; 40(2): 152-157. DOI: 10.18287/2412-6179-2016-40-2-152-157.
  32. Kovalev AA, Kotlyar VV, Zaskanov SG, Kalinkina DS. Laguerre-Gaussian beams with complex shift in Cartesian coordinates. Computer Optics 2016; 40(1): 5-11. DOI: 10.18287/2412-6179-2016-40-1-5-11.
  33. Karpeev SV, Paranin VD, Kirilenko MS. Comparison of the stability of Laguerrе-Gauss vortex beams to random fluctuations of the optical environment. Computer Optics 2017; 41(2): 208-217. DOI: 10.18287/2412-6179-2017-41-2-208-217.
  34. Vickers J, et al. Phase and interference properties of optical vortex beams. J Opt Soc Am A 2008; 25(3), 823-827. DOI: 10.1364/JOSAA.25.000823.
  35. Soskin MS, Vasnetsov MV. Singular optics. Progress in Optics 2001; 42: 262. DOI: 10.1016/S0079-6638(01)80018-4.
  36. Bekshaev A, Orlinska O, Vasnetsov M. Optical vortex generation with a “fork” hologram under conditions of high-angle diffraction. Opt Comm 2010; 283(10): 2006-2016. DOI: 10.1016/j.optcom.2010.01.012.
  37. Soskin MS, Polyanskii PV, Arkhelyuk OO. Computer-synthesized hologram-based rainbow optical vortices. New J Phys 2004; 6: 196–204. DOI: 10.1088/1367-2630/6/1/196.
  38. Khonina SN, Karpeev SV, Alferov SV, Savelyev DA, Laukkanen J, Turunen J. Experimental demonstration of the generation of the longitudinal E-field component on the optical axis with high-numerical-aperture binary axicons illuminated by linearly and circularly polarized beams. Opt Express 2013; 16(5): 085704. DOI: 10.1088/2040-8978/15/8/085704.
  39. Khonina SN, Alferov SV, Karpeev SV. Strengthening the longitudinal component of the sharply focused electric field by means of higher-order laser beams. Opt Lett 2013; 38(17): 3223-3226. DOI: 10.1364/OL.38.003223.


© 2009, IPSI RAS
Россия, 443001, Самара, ул. Молодогвардейская, 151; электронная почта: ko@smr.ru ; тел: +7 (846) 242-41-24 (ответственный секретарь), +7 (846) 332-56-22 (технический редактор), факс: +7 (846) 332-56-20