(43-5) 06 * << * >> * Russian * English * Content * All Issues

Application of the coupled classical oscillators model to the Fano resonance build-up in a plasmonic nanosystem

P.A. Golovinski1,2, A.V. Yakovets1, E.S. Khramov1

Moscow Institute of Physics and Technology (State University),  
9 Institutskiy per., Dolgoprudny, Moscow Region, 141701, Russia,  
Voronezh State Technical University,  
20 let Oktyabrya st., 84, Voronezh, 394006, Russia

 PDF, 1750 kB

DOI: 10.18287/2412-6179-2019-43-5-747-755

Pages: 747-755.

Full text of article: Russian language.

We study the excitation dynamics of Fano resonance within the classical model framework of two linear coupled oscillators. An exact solution for the model with a damped harmonic force is obtained. Details of the growth of a Fano profile under the harmonic excitation are shown. For an incident ultra-wideband pulse, the reaction of the system becomes universal and coincides with the time-dependent response function. The results of numerical calculations clarify two alternative ways for the experimental measurement of complete characteristics of the system: via direct observation of the system response to a monochromatic force by frequency scanning or recording the time-dependent response to a d-pulse. As a specific example, the time-dependent excitation in a system consisting of a quantum dot and a metal nanoparticle is calculated. Then, we show the use of an extended model of damped oscillators with radiative correction to describe the plasmon Fano resonance build-up when a femtosecond laser pulse is scattered by a nanoantenna.

Fano resonance, model of coupled oscillators, ultrashort laser pulse, nanoantenna.

Golovinski PA, Yakovets AV, Khramov ES. Application of the coupled classical oscillators model to the Fano resonance build-up in a plasmonic nanosystem. Computer Optics 2019; 43(5): 747-755. DOI: 10.18287/2412-6179-2019-43-5-747-755.

This work was supported by the State Contract of the RF Ministry of Education and Science (assignment No. 3.9890.2017/8.9).


  1. Allen L, Eberly J. Optical resonance and two-level atoms. Courier Corporation; 1975.
  2. Akulin VM, Karlov NV. Intensive resonant interactions in quantum electronics. Springer; 1991.
  3. Astapenko V. Interaction of ultrashort electromagnetic pulses with matter. New York: Springer; 2013.
  4. Arustamyan MG, Astapenko VA. Phase control of two-level system excitation by short laser pulses. Laser Phys 2008; 18: 768-773.
  5. Astapenko VA, Romadanovskii MS. Excitation of two-level system by chirped laser pulse. Laser Phys 2009; 19: 969-973.
  6. Fano U. Effects of configuration interaction on intensities and phase shifts. Phys Rev 1961; 13: 1866.
  7. Lisitsa VS, Yakovlenko SI. Resonance of discrete states against the background of a continuous spectrum. JETP 1974; 39: 975-980.
  8. Feshbach H. Unified theory of nuclear reactions. Ann Phys 1958; 5: 357-390.
  9. Rosmej FB, Astapenko VA, Lisitsa VS. Effect of ultrashort laser-pulse duration on Fano resonances in atomic spectra. Phys Rev A 2014; 90: 043421.
  10. Bixon M, Jortner J. Intramolecular radiation transitions. J Chem Phys 1968; 48: 715-726.
  11. Uzer T, Miller WH. Theories of intermolecular vibrational energy transfer. Phys Rep 1991; 199: 73-146.
  12. Osherov VI, Medvedev ES. Theory of nonradiative transitions in polyatomic molecules [In Russian]. Moscow: "Nauka" Publisher; 1983.
  13. Agranovich VM, Galanin MD. Electron-excitation energy transfer in condensed media. Moscow: "Nauka" Publisher; 1978.
  14. Chin C, Grimm R, Julienne P, Tiesinga E. Feshbach resonances in ultracold gases. Rev Mod Phys 2010; 82: 1225-1286.
  15. Miroshnichenko AE. Fano resonances in nanoscale structures. Rev Mod Phys 2010; 82: 2257-2298.
  16. Förstner J, Weber C, Danckwerts J, Knorr A. Phonon-assisted damping of Rabi oscillations in semiconductor quantum dots. Phys Rev Lett 2003; 91: 127401.
  17. Verzelen O, Ferreira R, Bastard G. Excitonic polarons insemiconductor quantum dots. Phys Rev Lett 2002; 88: 146803.
  18. Xu SJ. Resonant coupling of bound excitons with LO phonons in ZnO: Excitonic polaron states and Fano resonance. J Chem Phys 2005; 123: 221105.
  19. Kerfoot ML, Govorov AO, Czarncki C, Lu D, Gad YN, Bracker AS, Gammon D, Scheiber M. Optophononics with coupled quantum dots. Nat Commun 2014; 5: 3299.
  20. Hetz R, Mukhametzhanov I, Stier O, Madhukar A, Bimberg D. Enhanced polar ecxiton-LO-phonon interaction in quantum dots. Phys Rev Lett 1999; 83: 4654.
  21. Cheng M-T, Song Y-Y. Fano resonance analysis in a pair of semiconductor quantum dots coupling to a metal nanowire. Opt Lett 2012; 37: 978-980.
  22. Shoh RA, Scherer NF, Pelton M, Gray SK. Ultrafast reversal of Fano resonance in plasmon-exciton system. Phys Rev B 2013; 88: 075411.
  23. Marinica DC, Lourenço-Martins H, Aizpurua J, Borisov AG. Plexciton quenching by resonant electron transfer from quantum emitter to metallic nanoantenna. Nano Lett 2013; 13: 5972-5978.
  24. Zhang W, Govorov AO, Bryant GW. Semiconductor-metal nanoparticle molecules: Hybrid excitons and the nonlinear effect. Phys Rev Lett 2006; 97: 146804.
  25. Manjavacas A, Garcíde Abajo FJ, Nordlander P. Quantum plexcitons: Strongly interacting plasmons and exitons. Nano Lett 2011; 11: 2118-2323.
  26. Artuso RD, Bryant GW. Hybrid quantum dot-metal nanoparticle systems: connecting the dots. Acta Phys Pol A 2012; 122: 289-293.
  27. Andrianov ES, Pukhov AA, Vinogradov AP, Dorofeenko AV, Lisyansky AA. Modification of the resonance fluorescence spectrum of a two-level atom in the near field of a plasmonic nanoparticle. JETP Lett 2013; 97(8): 452-458.
  28. Yang J, Perrin M, Lalanne P. Analytical Formalism for the interaction of two-level quantum systems with metal nanoresonators. Phys Rev X 2015; 5: 021008.
  29. Hartsfield T, Chang W-S, Yang S-C, Ma T, Shi J, Sun L, Shvets G, Link S, Li X. Single quantum dot controls a plasmonic cavity’s scattering and anisotropy. PNAS 2015; 112: 12288-12292.
  30. Andryushin AI, Kazakov AE, Fedorov MV. Effect of resonant electromagnetic field on the autoionizing states of atoms. JETP 1982; 55: 53-58.
  31. Kiröla E, Eberly JH. Quasicontinuum effects in molecular excitation. J Chem Phys 1985; 82: 1841-1854.
  32. Knight PL, Lauder MA, Dalton BJ. Laser-induced continuum structure. Phys Rep 1990; 190: 1-61.
  33. Zhang SB, Rohringer N. Photoemission spectroscopy with high-intensity short-wavelength lasers. Phys Rev A 2014; 89: 013407.
  34. Riffe DM. Classical Fano oscillator. Phys Rev B 2011; 84: 064308.
  35. Limonov MF, et al. Fano resonances in photonics. Nat Photon 2017; 11: 543-554.
  36. Joe YS, Satanin AM, Kim CS. Classical analogy of Fano resonances. Phys Scr 2006; 74: 259-266.
  37. Misochko OV, Lebedev MV. Fano interference at the excitation of coherent phonons: Relation between the asymmetry parameter and the initial phase of coherent oscillations. JETP 2015; 120: 651-663.
  38. Li R, Fu J, Wu Q, Zhang K, Chen W, Wang Z, Ma R. Analysis and modeling of Fano resonances using equivalent circuit elements. Sci Rep 2016; 6: 31884.
  39. Mirin NA, Bao K, Nordlander P. Fano resonances in plasmonic nanoparticle aggregates. J Phys Chem A 2009; 113: 4028-4034.
  40. Kui B, Heidar S, Peter N. Plasmon hybridization for real metals. Chin Sc Bull 2010; 55: 2629-2634.
  41. Mukherjee S, Sobhani H, Lassiter JB, Bardhan R, Nordlander P, Halas NJ. Fanoshells: Nanoparticles with built-in Fano resonances. Nano Lett 2010; 10: 2694-2701.
  42. Wu X, Gray SK, Pelton M. Quantum-dot transparency in a nanoscale plasmonic resonator. Opt Express 2010; 18: 23633-23645.
  43. Lovera A, Gallinet B, Nordlander P, Martin JF. Mechanisms of Fano resonances in coupled plasmonic systems. ACS Nano 2013; 7: 4527-4536.
  44. Kats MA, Yu N, Genevet P, Gaburro Z, Capasso F. Effect of radiation damping on the spectral response of plasmonic components. Opt Express 2011; 19: 21749-21753.
  45. Anderson A, Deryckx KS, Xu GX, Steinmeyer G, Raschke MB. Few-femtosecond plasmon dephasing of a single metallic nanostructure from optical response function reconstruction by interferometric frequency resolved optical gating. Nano Lett 2010; 10: 2519-2524.
  46. Ruan Z, Fan S. Temporal coupled-mode theory for light scattering by an arbitrarily shaped object supporting a single resonance. Phys Rev A 2012; 85: 043828.


© 2009, IPSI RAS
Россия, 443001, Самара, ул. Молодогвардейская, 151; электронная почта: ko@smr.ru ; тел: +7 (846) 242-41-24 (ответственный секретарь), +7 (846) 332-56-22 (технический редактор), факс: +7 (846) 332-56-20