(43-5) 10 * << * >> * Russian * English * Content * All Issues

Analysis of characteristics of paraxial vector Gaussian beams affecting the formation of microstructures in an azopolymer

S.N. Khonina1,2, S.I. Kharitonov1,2, S.G. Volotovskiy1,2, V.V. Podlipnov1,2, N.A. Ivliev1,2

IPSI RAS – Branch of the FSRC “Crystallography and Photonics” RAS,  
Molodogvardeyskaya 151, 443001, Samara, Russia,  
Samara National Research University,
Moskovskoye shosse 34, 443086, Samara, Russia

 PDF, 1466 kB

DOI: 10.18287/2412-6179-2019-43-5-780-788

Full text of article: Russian language.

Pages: 780-788.

The paper considers paraxial Gaussian laser beams with different polarization states and their characteristics, such as the Poynting vector, gradient force, and force density, which are important for evaluating the effects of radiation on matter. An analysis of the considered characteristics of laser radiation from the point of view of the formation of photoinduced microrelief in an azopolymer film is carried out.

Gaussian beam, polarization state, optical forces, optical recording of materials, azopolymer, azochromophore, photoisomerization, photomigration, surface microstructures.

Khonina SN, Kharitonov SI, Volotovskiy SG, Podlipnov VV, Ivliev NA. Analysis of characteristics of paraxial vector Gaussian beams affecting the formation of microstructures in an azopolymer. Computer Optics 2019; 43(5): 780-788. DOI: 10.18287/2412-6179-2019-43-5-780-788.

This work was financially supported by the Russian Foundation for Basic Research under project No. 18-07-01470 (“Formation of structures on the surface of the azopolymer” and “Modelling of optical forces”), and by the RF Ministry of Science and Higher Education within a government project of FSRC “Crystallography and Photonics” RAS under agreement 007-ГЗ/Ч3363/26.


  1. Ashkin A. Acceleration and Trapping of Particles by Radiation Pressure. Phys Rev Lett 1970; 24(4): 156-159. DOI: 10.1103/PhysRevLett.24.156.
  2. Ashkin A, Dziedzic JM, Bjorkholm JE, Chu S. Observation of a single-beam gradient force optical trap for dielectric particles. Opt Lett 1986; 11(5): 288-290. DOI: 10.1364/OL.11.000288.
  3. Svoboda K, Block SM. Optical trapping of metallic Rayleigh particles. Opt Lett 1994; 19(13): 930-932.
  4. Nieminen TA, Rubinsztein-Dunlop H, Heckenberg NR. Calculation and optical measurement of laser trapping forces on non-spherical particles. J Quantitative Spectroscopy & Radiative Transfer 2001; 70(4-6): 627-637.
  5. Khonina SN, Kotlyar VV, Skidanov RV, Soifer VA, Jefimovs K, Simonen J, Turunen J. Rotation of microparticles with Bessel beams generated by diffractive elements. Journal of Modern Optics 2004; 51(14): 2167-2184.
  6. Dienerowitz M, Mazilu M, Dholakia K. Optical manipulation of nanoparticles: a review. J Nanophoton 2008; 2(1): 021875. DOI: 10.1117/1.2992045.
  7. Maragò OM, Philip HJ, Pietro GG, Giovanni V, Andrea CF. Optical trapping and manipulation of nanostructures. Nat Nanotech 2013; 8: 807-819.
  8. Gao D, et al. Optical manipulation from the microscale to the nanoscale: fundamentals, advances and prospects. Light Sci Appl 2017; 6: e17039.
  9. Bradac C. Nanoscale optical trapping: A review. Advanced Optical Materials 2018; 6(12): 1800005. DOI: 10.1002/adom.201800005.
  10. Gregson V. Laser material processing. Holland: Holland Publishing Company; 1984.
  11. Steen WM. Laser material processing. 3rd ed. London: Springer; 2003.
  12. Sun H-B, Kawata S. Two-photon photopolymerization and 3D lithographic microfabrication. Advances in Polymer Science 2004; 170: 169-273.
  13. Ion JC. Laser processing of engineering materials: Principles, procedure and industrial applications. Oxford: Elsevier Butterworth-Heinemann; 2005.
  14. Meier M, Romano V, Feurer T. Material processing with pulsed radially and azimuthally polarized laser radiation, Appl Phys A 2007; 86: 329-334.
  15. Cheng J. A review of ultrafast laser materials micromachining. Opt Laser Technol 2013; 46: 88-102.
  16. Zayarny DA, Ionin AA, Kudryashov SI, Makarov SV, Rudenko AA, Bezhanov SG, Uryupin SA, Kanavin AP, Emel’yanov VI, Alferov SV, Khonina SN, Karpeev SV, Kuchmizhak AA, Vitrik OB, Kulchin YuN. Nanoscale boiling during single-shot femtosecond laser ablation of thin gold films. JETP Lett 2015; 101(6): 394-397. DOI: 10.1134/S0021364015060132.
  17. Eismann JS, Neugebauer M, Banzer P. Exciting a chiral dipole moment in an achiral nanostructure. Optica 2018; 5(8): 954-959. DOI: 10.1364/OPTICA.5.000954.
  18. Poplipnov VV, Ivliev NA, Khonina SN, Nesterenko DV, Vasilev VS, Achimova EA. Investigation of photoinduced formation of microstructures on the surface of carbaseole-containing azopolymer depending on the power density of incident beams. Computer Optics 2018; 42(5): 779-785. DOI: 10.18287/2412-6179-2018-42-5-779-785.
  19. Keller WJ, Shen N, Rubenchik AM, Ly S, Negres R, Raman RN, Yoo J-H, Guss G, Stolken JS, Matthews MJ, Bude JD. Physics of picosecond pulse laser ablation. J Appl Phys 2019; 125: 085103. DOI: 10.1063/1.5080628.
  20. Gordon JP. Radiation forces and momenta in dielectric media. Phys Rev A 1973; 8(1): 14-21.
  21. Ashkin A. Forces of a single-beam gradient laser trap on a dielectric sphere in the ray optics regime. Biophys J 1992; 61: 569-582.
  22. Harada Y. Radiation forces on a dielectric sphere in the Rayleigh scattering regime. Opt Commun 1996; 124(5-6): 529-541.
  23. Niziev VG, Nesterov AV. Influence of beam polarization on laser cutting efficiency. J Phys D: Appl Phys 1999; 32: 1455-1461.
  24. Bian S. Photoinduced surface deformations on azobenzene polymer films. Journal of Applied Physics 1999; 86(8): 4498-4508. DOI: 10.1063/1.371393.
  25. Hnatovsky C, Shvedov VG, Shostka N, Rode AV, Krolikowski W. Polarization-dependent ablation of silicon using tightly focused femtosecond laser vortex pulses. Opt Lett 2012; 37(2): 226-228 .
  26. Meshalkin A, et al. Direct photoinduced surface relief formation in carbazole-based azopolymer using polarization holographic recording. Journal of Optoelectronics and Advanced Materials 2016; 18(9-10): 763-768.
  27. Chaumet PC, Nieto-Vesperinas M. Time-averaged total force on a dipolar sphere in an electromagnetic field. Opt Lett 2000; 25: 1065-1067.
  28. Mishchenko MI. Radiation force caused by scattering, absorption, and emission of light by nonspherical particles. J Quant Spectrosc Radiat Transf 2001; 70: 811-816.
  29. Moine O, Stout B. Optical force calculations in arbitrary beams by use of the vector addition theorem. J Opt Soc Am B 2005; 22(8): 1620-1631.
  30. Wong V, Ratner MA. Explicit computation of gradient and nongradient contributions to optical forces in the discrete-dipole approximation. J Opt Soc Am B 2006; 23: 1801-1814.
  31. Wong V, Ratner MA. Gradient and nongradient contributions to plasmon-enhanced optical forces on silver nanoparticles. Phys Rev B 2006 ;73(7): 075416.
  32. Albaladejo S, Marqués MI, Laroche M, Sáenz JJ. Scattering forces from the curl of the spin angular momentum of a light field. Phys Rev Lett 2009; 102(11): 113602.
  33. Sekkat Z, Dumont M. Photoinduced orientation of azo dyes in polymeric films. Characterization of molecular angular mobility. Synthetic Metals 1993; 54(1-3): 373-381.
  34. Dumont M. Photoinduced orientational order in dyedoped amorphous polymeric films. Molecular Crystals and Liquid Crystals Science and Technology. Section A. Molecular Crystals and Liquid Crystals 1996; 282(1): 437-450. DOI: 10.1080/10587259608037597
  35. Ishitobi H, Tanabe M, Sekkat Z, Kawata S. The anisotropic nanomovement of azo-polymers. Optics Express 2007; 15(2): 652-659.
  36. Simonov A, Larichev A. Dynamics of photoinduced processes in liquid-crystal polymer films containing azo compounds. Quantum Electronics 1999; 29(7): 644-648.


© 2009, IPSI RAS
Россия, 443001, Самара, ул. Молодогвардейская, 151; электронная почта: ko@smr.ru ; тел: +7 (846) 242-41-24 (ответственный секретарь), +7 (846) 332-56-22 (технический редактор), факс: +7 (846) 332-56-20