(43-5) 12 * << * >> * Russian * English * Content * All Issues

Limiting capabilities of self-mixing interferometry upon sawtooth modulation of a semiconductor laser wavelength

D.A. Usanov1, A.V. Skripal1, S.Yu. Dobdin1, A.V. Dzhafarov1, I.S. Sokolenko1

Saratov State University, 410012, Saratov, Russia, Astrakhanskaya 83

 PDF, 854 kB

DOI: 10.18287/2412-6179-2019-43-5-796-802

Pages: 796-802.

Full text of article: Russian language.

This paper discusses a self-mixing interferometry method for measuring distances upon sawtooth modulation of the wavelength of laser radiation. Conditions under which the distance obtained from the spectrum of the modeled autodyne signal coincides with the distance specified in computer simulation are determined. The limiting capabilities of the method are theoretically substantiated for the increased range of deviations of the laser wavelength. The estimation of the limiting capabilities of the distance measurement method on the spectrum of the autodyne signal gives 10 microns at a wavelength of 650 nm at a 5-nm deviation of laser radiation wavelength. We also discuss difficulties of attaining the limiting accuracy of distance measurements associated with the nonlinear dependence of the wavelength emitted by a laser diode on its supply current and the need to analyze the self-mixing signal at high frequencies.

semiconductor laser, self-mixing interferometry, distance measurement, wavelength modulation.

Usanov DA, Skripal AV, Dobdin SYu, Dzhafarov AV, Sokolenko IS. Limiting capabilities of self-mixing interferometry upon sawtooth modulation of a semiconductor laser wavelength. Computer Optics 2019; 43(5): 796-802. DOI: 10.18287/2412-6179-2019-43-5-796-802.

The work was funded by the Ministry of education and science of the Russian Federation (state task №8.7628.2017) and the Russian Science Foundation (project No. 19-79-00122).


  1. Bosch T, Lescure M, eds. Optical distance measurement methods can technically be put into three categories: interferometry, time-of-flight and triangulation methods. Selected Papers on Laser Distance Measurement, SPIE Milestone Series 1995; 115: 738.
  2. Kilpelä A, Pennala R, Kostamovaara J. Precise pulsed time-of-flight laser range finder for industrial distance measurements. Review of Scientific Instruments 2001; 72: 2197-2202.
  3. Lee J, Kim Y-J, Lee K, Lee S, Kim S-W. Time-of-flight measurement with femtosecond light pulses. Nat Photon 2010; 4(10): 716-720.
  4. Hintikka M, Kostamovaara J. Experimental investigation into laser ranging with sub-ns laser pulses. IEEE Sensors Journal 2018; 18(3): 1047-1053.
  5. Ji Z, Leu MC. Design of optical triangulation devices. Opt Laser Technol 1989; 21(5): 339-341.
  6. Clarke TA, Grattan KTV, Lindsey NE. Laser-based triangulation techniques in optical inspection of industrial structures. Proc SPIE 1991; 1332: 474-487. DOI: 10.1117/12.51096
  7. Reza SA, Khwaja TS, Mazhar MA, Niazi HK, Nawab R. Improved laser-based triangulation sensor with enhanced range and resolution through adaptive optics-based active beam control. Appl Opt 2017; 56(21): 5996-6006.
  8. Daendliker R, Hug K, Politch J, Zimmermann E. High-accuracy distance measurements with multiple-wavelength interferometry. Opt Eng 1995; 34(8): 2407-2413. DOI: 10.1117/12.205665.
  9. Berkovic G, Shafir E. Optical methods for distance and displacement measurements. Adv Opt Photon 2012; 4(4): 441-471. DOI: 10.1364/AOP.4.000441.
  10. Amann MC, Bosch TM, Lescure M, Myllylae RA, Rioux M. Laser ranging: a critical review of usual technique for distance measurement. Opt Eng 2001; 40(1): 10-19.
  11. Kliese R, Taimre T, Bakar AAA, Lim YL, Bertling K, Nikolić M, Rakić AD. Solving self-mixing equations for arbitrary feedback levels: a concise algorithm. Appl Opt 2014; 53(17): 3723-3736. DOI: 10.1364/AO.53.003723.
  12. Usanov DA, Skripal AV. Measurement of micro-and nanovibrations and displacements using semiconductor laser autodynes. Quant Electron 2011; 41(1), 86-94.
  13. Li D., Huang Z., Mo W., Ling Y., Zhang Z., Huang Z. Equivalent wavelength self-mixing interference vibration measurements based on envelope extraction Fourier transform algorithm. Applied Optics; 2017; 56(31), P.8584-8591. https://doi.org/10.1364/AO.56.008584
  14. Zhu W, Chen Q, Wang Y, Luo H, Wu H, Ma B. Improvement on vibration measurement performance of laser self-mixing interference by using a pre-feedback mirror. Opt Laser Eng 2018; 105: 150-158.
  15. Norgia M, Donati S. A displacement-measuring instrument utilizing self-mixing interferometry. IEEE Transactions On Instrumentation and Measurement 2003; 52(6): 1765-1770.
  16. Xu J, Huang L, Yin S, Gao B, Chen P. All-fiber self-mixing interferometer for displacement measurement based on the quadrature demodulation technique. Opt Rev 2018; 25(1): 40-45.
  17. Guo D, Shi L, Yu Y, Xia W, Wang M. Micro-displacement reconstruction using a laser self-mixing grating interferometer with multiple diffraction. Opt Express 2017; 25(25): 31394-31406. DOI: 10.1364/OE.25.031394.
  18. Koelink M.H., Slot M., F.F.de Mul. Laser Doppler velocimeter based on the self-mixing effect in a fiber-coupled semiconductor laser: theory. Applied Optics; 1992; Vol.31, P.3401-3408.
  19. Scalise L, Yu YG, Giuliani G, Plantier G, Bosch T. Self-mixing laser diode velocimetry: Application to vibration and velocity measurement. IEEE Transactions on Instrumentation and Measurement 2004; 53(1): 223-232.
  20. Lin H, Chen J, Xia W, Hao H, Guo D, Wang M. Enhanced self-mixing Doppler velocimetry by fiber Bragg grating. Opt Eng 2018; 57(5): 051504. DOI: 10.1117/1.OE.57.5.051504.
  21. Guo D, Jiang H, Shi L, Wang M. Laser self-mixing grating interferometer for MEMS accelerometer testing. IEEE Photonics Journal 2018; 10(1): 1-9.
  22. Usanov DA, Skripal AV, Dobdin SY. Determining acceleration from micro- and nanodisplacements measured using autodyne signal of semiconductor laser on quantum-confined structures. Technical Physics Letters 2010; 36(11): 1009-1011.
  23. Usanov DA, Skripal AV, Dobdin SY. The definition of acceleration unevenly accelerated micro- and nanosleep object autodyne signal of a semiconductor laser [In Russian]. Nano- and Microsystem Technology 2010; 10: 51-54.
  24. Olesen H, Osmundsen JH, Tromborg B. Nonlinear dynamics and spectral behavior for an external cavity laser. IEEE J Quantum Electron 1986; 22(6): 762-773.
  25. Schunk N, Petermann K. Numerical analysis of the feedback regimes for a single-mode semiconductor laser with external feedback. IEEE J Quantum Electron 1988; 24(7): 1242-1247.
  26. Suharev AG, Napartovich AP. Harmonic modulation of radiation of an external-feedback semiconductor laser [In Russian]. Quant Electron 2007; 37(2): 149-153.
  27. Giuliani G, Norgia M, Donati S, Bosch T. Laser diode self-mixing technique for sensing applications. J Opt A: Pure Appl Opt 2002; 4(6): S283-S294.
  28. Norgia M, Magnani A, Pesatori A. High resolution self-mixing laser rangefinder. Review of Scientific Instruments 2012; 83(4): 045113. DOI: 10.1063/1.3703311.
  29. Kou K, Li X, Li L, Xiang H. Injected current reshaping in distance measurement by laser self-mixing interferometry. Appl Opt 2014; 53(27): 6280-6286. DOI: 10.1364/AO.53.006280.
  30. Usanov DA, Skripal AV, Astakhov EI, Kostuchenko IS, Dobdin SY. Autodyne interferometry of a distance using a semiconductor laser with current modulation in the wavelength of the radiation. Computer Optics 2018; 42(1): 54-59. DOI: 10.18287/2412-6179-2018-42-1-54-59.
  31. Astakhov EI, Usanov DA, Skripal AV, Dobdin SYu. Self-mixing interferometry of distance at wavelength modulation of semiconductor laser. Izvestiya of Saratov University. New series. Series Physics 2015; 15(3): 12-18. DOI: 10.18500/1817-3020-2015-15-3-12-18.


© 2009, IPSI RAS
Россия, 443001, Самара, ул. Молодогвардейская, 151; электронная почта: ko@smr.ru ; тел: +7 (846) 242-41-24 (ответственный секретарь), +7 (846) 332-56-22 (технический редактор), факс: +7 (846) 332-56-20