(44-4) 04 * << * >> * Russian * English * Content * All Issues

The combined use of adaptive optics and nonlinear optical wavefront reversal techniques to compensate for turbulent distortions when focusing laser radiation on distant objects
V.P. Lukin 1, N.N. Botygina 1, P.A. Konyaev 1, O.V. Kulagin 2, I.A. Gorbunov 2

V.E. Zuev Institute of Atmospheric Optics SB RAS, Tomsk,
Institute of Applied Physics RAS, Niznii Novgorod

 PDF, 1509 kB

DOI: 10.18287/2412-6179-CO-725

Pages: 519-532.

Full text of article: Russian language.

Approaches to constructing a mock-up of a system for focusing laser radiation on distant objects using both adaptive optics elements and nonlinear-optical wavefront reversal methods providing compensation for turbulent distortions are considered. Numerical calculations were preliminarily performed, in which the split-step method was used as a numerical method for solving a second-order partial differential wave equation for the complex amplitude of the wave field of a laser beam. This method, combined with methods of spectral-phase Fourier transforms and statistical tests, is the most effective way to obtain reliable quantitative results for solving engineering problems of atmospheric wave optics. Quantitative data are obtained on the effect of turbulent atmospheric distortions along propagation paths on the main parameters of coherent laser beams – focusing, effective average radius, and the proportion of the beam energy in its diffraction spot. The preliminary results obtained of the system mock-up performance confirm the conclusions of the theory.

adaptive optics, phase conjugation, wavefront reversal, wavefront sensor.

Lukin VP, Botygina NN, Konyaev PA, Kulagin OV, Gorbunov IA. The combined use of adaptive optics and nonlinear optical wavefront reversal techniques to compensate for turbulent distortions when focusing laser radiation on distant objects. Computer Optics 2020; 44(4): 519-532. DOI: 10.18287/2412-6179-CO-725.

The authors are grateful to the staff of the IOA SB RAS: Leading engineer A. Borzilov and Ph.D. Torgaeva A.V. for carrying out measurements of atmospheric parameters, Ph.D. Lavrinova V.V. for the development of a wavefront sensor control program; E. Soin engineers and Selina A.A. for their help with the work. We express special gratitude and thanks to the designer A.N. Gritsuta and lead engineer O. N. Emaleev for participating in the development of the layout. The authors are also grateful to the IAP RAS employees: 1st category programmer S.O. Kulagin and research engineer Kulagin I.O. for help in creating and launching the laser part of the layout. We are looking forward to future joint serious work on the proposed layout.
This work was financially supported by the RF Ministry of Science and Higher Education as part of the government projects of the IOA SB RAS and IAP RAS.


  1. Babcock HW. The possibility of compensating astronomical seeing. Publ Astron Soc Pac 1953; 65: 229-236.
  2. Linnik VP. On the fundamental possibility of reducing the influence of the atmosphere on the image of a star [In Russian]. Optics and Spectroscopy 1957; 25(4): 401-402.
  3. Fried DL. Optical resolution through a randomly inhomogeneous medium for very long and very short exposures. J Opt Soc Am 1966; 56: 1372-1379.
  4. Lukin VP. Atmospheric adaptive optics. Bellingham: SPIE Press; 1995. ISBN: 978-0-8194-1871-5.
  5. Zeldovich BYa, Pilipetskiy NF. The wave front reversal [In Russian]. Moscow: "Nauka" Publisher; 1985.
  6. Bespalov VI, Pasmanik GA. Nonlinear optics and adaptive laser systems [In Russian]. Moscow: "Nauka" Publisher; 1986.
  7. Greenwood D. Special issue on adaptive optics. Linc Lab J 1992; 1: 3-170.
  8. Buffington A, Crowford FS,  Muller RA, Schwemin AJ, Smits RG. Correction of atmospheric distortion with an image-sharpening telescope. J Opt Soc Am 1977; 67(3): 298-303.
  9. Cathey WT, Hayes CL, Davis WC, Pizzurro VF. Compensation for atmospheric phase effects at 10.6 micro. Appl Opt 1970; 9(3): 701-707.
  10. Lukin VP. Reciprocity principle and adaptive control of optical radiation parameters.Sov J Quantum Electron1982; 12(5): 602-605.
  11. Fortes BV, Lukin VP. Adaptive beaming and imaging in the turbulent atmosphere. Bellingham, Washington: SPIE Press; 2002. ISBN: 0-8194-4337-9.
  12. Lukin VP, Fortes BV, Kanev FYu, Konyaev PA. Potential capabilities of аdaptive-optical systems in the atmosphere. J Opt Soc Am A 1994: 11(2): 903-907.
  13. Lukin VP, Fortes BV. Phase-correction of turbulent distortions of an optical wave propagating under conditions of strong intensity fluctuations. Appl Opt 2002; 41(27): 5616-5624.
  14. Lukin VP, Kanev FYu, Sennikov VA, Makenova NA, Tartakovskii VA, Konyaev PA. Phase and amplitude – phase control of a laser beam propagating in the atmosphere.Quantum Electronics2004; 34(9): 825-832.
  15. Guthery CE, Hart M. Theory and design of a hybrid wave-front sensor for adaptive optics. Imaging and Applied Optics 2019: OSA Technical Digest (Optical Society of America) 2019: PTu3C.4.
  16. Vorontsov M. Overview of long-range (149 km) laser beam propagation and atmospheric sensing experiments. Imaging and Applied Optics 2019: OSA Technical Digest (Optical Society of America) 2019: JW2A.36.
  17. Charnotskii M. Fifty years of strong scintillation theory. Imaging and Applied Optics 2019: OSA Technical Digest (Optical Society of America) 2019: PM1C.1.
  18. Saichev AI. Reflection from a mirror reversing the wavefront, taking into account backscattering in an inhomogeneous medium [In Russian]. Izvestia VUZov: Radiophysics 1981; 24: 1165-1167.
  19. Saichev AI. The effect of compensation by the wavefront reversing distortions by the wave mirror due to scattering in an inhomogeneous medium [In Russian]. Izvestia Akademii Nauk USSR: Radiotehnika i Elektronika 1982; 27: 1601-1608.
  20. Malakhov AI, Poloviikin AV, Saichev AI. About the average intensity of a wave reflected from a phase conjugation mirror in a turbulent medium [In Russian]. Izvestia VUZov: Radiophysics 1983; 26(5): 579-586.
  21. Akhunov HG, Bunkin FV, Vlasov DV, Kravtsov YuA. On the efficiency of focusing a reversed wave field in a turbulent atmosphere in the presence of wind [In Russian]. Izvestia Akademii Nauk USSR: Radiotehnika i Elektronika 1984: 29(1): 1-4.
  22. Akhunov KhG, Kravtsov YuA. On the manifestations of the efficiency of backscattering upon reflection from a phase conjugation mirror [In Russian]. Izvestia VUZov: Radiophysics 1983; 26(5): 635-637.
  23. Andreev NF, Bespalov VI, Kiselev AM, Matveev AZ, Pasmanik GA, Shilov AA. Wave-front inversion of weak optical signals with a large reflection coefficient. JETP Letters 1980; 32(11): 625-629.
  24. Kulagin OV, Pasmanik GA, Shilov AA. Amplification and phase conjugation of weak signals. Physics-Uspekhi 1992; 162(6): 129-157.
  25. Khizhnyak A, Markov V. TIL system with nonlinear phase conjugation. Proc SPIE 2007; 6708: 67080H.
  26. Khizhnyak A, Markov V, Tomov I, Wu F. Novel approach for beacon formation through simulated turbulence: initial lab-test results. Proc SPIE 2010; 7588: 758807.
  27. Khizhnyak A, Markov V, Chavez J, Liu Sh. Beacon-defined performance of adaptive optics. Proc SPIE 2012; 8517: 85170Y.
  28. Kulagin OV, Lukin VP, Sergeev AM, Peterson D, Valley M. Compensation of phase distortions during observation through a turbulent atmosphere using phase conjugation during four-wave interaction of light with hypersound [In Russian]. In Book: Proceedings of the XVI International Symposium “Atmoshere and Ocean Optics. Atmospheric Physics”. Tomsk: 2009.
  29. Kanev FYu, Kulagin OV, Lukin VP. Hybrid adaptive system performance. In Book: Proceedings of the International Conference “Laser Optics 2010”. Saint-Petersburg: 2010.
  30. Lukin VP, Kanev FYu, Kulagin OV. Possibilities of joint application of adaptive optics technique and nonlinear optical phase conjugation to compensate for turbulent distortions. Quantum Electronics 2016: 46(5): 481-486.
  31. Ryou A, Colburn Sh, Majumdar A. Image amplification in a self-imaging degenerate optical cavity. Source: <https://arxiv.org/abs/1905.01551>.
  32. Brustlein S, Devaux F, Lantz E. Limits of amplification of weak images. J Mod Opt 2006; 53(5-6): 799-807. DOI: 10.1080/09500340500225962.
  33. Mosset A, Devaux F, Lantz E. Spatially noiseless optical amplification of images. Phys Rev Lett 2005; 94: 223603.
  34. Khizhnyak A, Markov V, Tomov I, Murrell D. Pulse laser imaging amplifier for advanced Ladar systems. Opt Eng 2016; 56(3): 031218.
  35. Gladkikh VA, Makienko AE. Digital ultrasonic weather station [In Russian]. Instruments 2009; 7: 21-25.
  36. Visionica Ltd. Products. Source: <http://www.visionica.biz/>.

© 2009, IPSI RAS
151, Molodogvardeiskaya str., Samara, 443001, Russia; E-mail: ko@smr.ru ; Tel: +7 (846) 242-41-24 (Executive secretary), +7 (846) 332-56-22 (Issuing editor), Fax: +7 (846) 332-56-20