(44-4) 06 * << * >> * Russian * English * Content * All Issues

Design and fabrication of a freeform mirror generating a uniform illuminance distribution in a rectangular region
E.S. Andreev 1,2, E.V. Byzov 1, D.A. Bykov 1,2, М.А. Moiseev 1, N.L. Kazanskiy 1,2, L.L. Doskolovich 1,2

IPSI RAS – Branch of the FSRC "Crystallography and Photonics" RAS, 443001, Samara, Russia, Molodogvardeyskaya 151,
Samara National Research University, 443086, Samara, Russia, Moskovskoye Shosse 34

 PDF, 1308 kB

DOI: 10.18287/2412-6179-CO-738

Pages: 540-546.

Full text of article: Russian language.

The design of a freeform mirror generating a uniform illuminance distribution in a rectangular region with angular dimensions of 30°x15° is presented. The design method is based on the formulation of the problem of calculating the "ray-mapping" as a Monge-Kantorovich mass transportation problem and its subsequent reducing to a linear assignment problem. We describe a mirror fabrication process with the use of milling technology and present results of experimental measurements of the light distribution generated by the mirror. The experimental results are in good agreement with the results of numerical simulations and thus confirm the manufacturability of mirrors designed by the method proposed.

inverse problem, freeform mirror, illuminance, milling technology.

Andreev ES, Byzov EV, Bykov DA, Moiseev МА, Kazanskiy NL, Doskolovich LL. Design and fabrication of a freeform mirror generating a uniform illuminance distribution in a rectangular region. Computer Optics 2020; 44(4): 540-546. DOI: 10.18287/2412-6179-CO-738.

This work was funded by the Russian Science Foundation under project No. 18-19-00326 (design, manufacture, and experimental investigation of the mirror) and the RF Ministry of Science and Higher Education under a government project of FSRC «Crystallography and Photonics» RAS (numerical simulation of the mirror).


  1. Wu R, Feng Z, Zheng Z, Liang R, Benítez P, Miñano JC. Design of freeform illumination optics. Laser Photonics Rev 2018; 12(7): 1700310. DOI: 10.1002/lpor.201700310.
  2. Wu R, Liu P, Zhang Y, Zheng Z, Li H, Liu X. A mathematical model of the single freeform surface design for collimated beam shaping. Opt Express 2013; 21(18): 20974-20989. DOI: 10.1364/OE.21.020974.
  3. Wu R, Xu L, Liu P, Zhang Y, Zheng Z, Li H, Xiu X. Freeform illumination design: a nonlinear boundary problem for the elliptic Monge–Ampère equation. Opt Lett 2013; 38(2): 229-231. DOI: 10.1364/OL.38.000229.
  4. Wu R, Zhang Y, Sulman MM, Zheng Z, Benítez P, Miñano JC. Initial design with L2 Monge–Kantorovich theory for the Monge–Ampère equation method in freeform surface illumination design. Opt Express 2014; 22(13): 16161-16177. DOI: 10.1364/OE.22.016161.
  5. Ma Y, Zhang H, Su Z, He Y, Xu L, Lui X, Li H. Hybrid method of free-form lens design for arbitrary illumination target. Appl Opt 2015; 54(14): 4503-4508. DOI: 10.1364/AO.54.004503.
  6. Mao X, Xu S, Hu X, Xie Y. Design of a smooth freeform illumination system for a point light source based on polar-type optimal transport mapping. Appl Opt 2017; 56(22): 6324-6331. DOI: 10.1364/AO.56.006324.
  7. Wu R, Chang S, Zheng Z, Zhao L, Liu X. Formulating the design of two freeform lens surfaces for point-like light sources. Opt Lett 2018; 43(7): 1619-1622. DOI: 10.1364/OL.43.001619.
  8. Glimm T, Oliker V. Optical design of single reflector systems and the Monge–Kantorovich mass transfer problem. J Math Sci 2003; 117(3): 4096-4108. DOI: 10.1023/A:1024856201493.
  9. Wang X-J. On the design of a reflector antenna II. Calc Var Partial Dif 2004; 20(3): 329-341. DOI: 10.1007/s00526-003-0239-4.
  10. Gutiérrez CE. Refraction problems in geometric optics. In Book: Gutiérrez CE, Lanconelli E, ed. Fully nonlinear PDEs in real and complex geometry and optics. New York: Springer, 2014: 95-150. DOI: 10.1007/978-3-319-00942-1_3.
  11. Gutiérrez CE, Huang Q. The refractor problem in reshaping light beams. Arch Ration Mech Anal 2009; 193(2): 423-443. DOI: 10.1007/s00205-008-0165-x.
  12. Rubinstein J, Wolansky G. Intensity control with a free-form lens. J Opt Soc Am A 2007; 24(2): 463-469. DOI: 10.1364/JOSAA.24.000463.
  13. Oliker V. Designing freeform lenses for intensity and phase control of coherent light with help from geometry and mass transport. Arch Ration Mech Anal 2011; 201(3): 1013-1045. DOI: 10.1007/s00205-011-0419-x.
  14. Oliker V, Doskolovich LL, Bykov DA. Beam shaping with a plano-freeform lens pair. Opt Express 2018; 26(15): 19406-19419. DOI: 10.1364/OE.26.019406.
  15. Doskolovich LL, Mingazov AA, Bykov DA, Andreev ES, Bezus EA. Variational approach to calculation of light field eikonal function for illuminating a prescribed region. Opt Express 2017; 25(22): 26378-26392. DOI: 10.1364/OE.25.026378.
  16. Doskolovich LL, Bykov DA, Andreev ES, Bezus EA, Oliker V. Designing double freeform surfaces for collimated beam shaping with optimal mass transportation and linear assignment problems. Opt Express 2018; 26(19): 24602-24613. DOI: 10.1364/OE.26.024602.
  17. Bykov DA, Doskolovich LL, Mingazov AA, Bezus EA, Kazanskiy NL. Linear assignment problem in the design of freeform refractive optical elements generating prescribed irradiance distributions. Opt Express 2018; 26(21): 27812-27825. DOI: 10.1364/OE.26.027812.
  18. Doskolovich LL, Bykov DA, Mingazov AA, Bezus EA. Optimal mass transportation and linear assignment problems in the design of freeform refractive optical elements generating far-field irradiance distributions. Opt Express 2019; 27(9): 13083-13097. DOI: 10.1364/OE.27.013083.
  19. Bykov DA, Doskolovich LL, Mingazov AA, Bezus EA. Optimal mass transportation problem in the design of freeform optical elements generating far-field irradiance distributions for plane incident beam. Appl Opt 2019; 58(33): 9131-9140. DOI: 10.1364/AO.58.009131.
  20. Munkres J. Algorithms for the assignment and transportation problems. J Soc Ind Appl Math 1957; 5(1): 32-38. DOI: 10.1137/0105003.
  21. TracePro. Software for design and analysis of illumination and optical systems. Source: <https://www.lambdares.com/tracepro/>.
  22. Haas F1 Team. MiniMill. Source: <https://www.haascnc.com/machines/vertical-mills/mini-mills/models/minimill.html>.
  23. Rhinoceros. Source: <https://www.rhino3d.com/>.

© 2009, IPSI RAS
151, Molodogvardeiskaya str., Samara, 443001, Russia; E-mail: ko@smr.ru ; Tel: +7 (846) 242-41-24 (Executive secretary), +7 (846) 332-56-22 (Issuing editor), Fax: +7 (846) 332-56-20