(44-4) 08 * << * >> * Russian * English * Content * All Issues

Bragg waveguide of rectangular cross-section
N.V. Selina 1

Kuban Station Technology University, Russia, Krasnodar

 PDF, 828 kB

DOI: 10.18287/2412-6179-CO-672

Pages: 552-560.

Full text of article: Russian language.

A method for calculating parameters of rectangular waveguides using separation of variables is presented. The method makes it possible to calculate multilayer Bragg waveguides with an arbitrary number of layers and an arbitrary composition as photonic crystal structures with defect. A result of the numerical calculation of the dispersion diagram of such a structure is given. This result is in good agreement with the earlier published data on the study of similar structures.

channel waveguide, Bragg multilayer structure, Maxwell’s equations.

Selina NV. Bragg waveguide of rectangular cross-section. Computer Optics 2020; 44(4): 552-560. DOI: 10.18287/2412-6179-CO-672.


  1. Boudrioua А. Photonic waveguides: Theory and applications. John Wiley and Sons; 2010. ISBN: 978-0-470-61114-2.
  2. Calvo ML, Lakshminarayanan V. Optical waveguides: from theory to applied mechanics. Taylor & Francis Group; 2007. ISBN: 978-1-57444-698-2.
  3. Snyder AW, Love JD. Optical waveguide theory. London, New York: Chapman and Hall; 1983.
  4. Adams MJ. An introduction to optical waveguides. Chichester, New York, Brisbane, Toronto: John Willey and Sons; 1981.
  5. Uranus HP, Rahman BMA. Low-loss ARROW waveguide with rectangular hollow core and rectangular low-density polyethylene/air reflectors for terahertz waves. J Nonlinear Opt Phys Mater 2018; 27(3): 1850029. DOI: 10.1142/S0218863518500297.
  6. Perevoznik D, Morgner U. Femtosecond writing of waveguides and waveguide network components. 2019 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference (CLEO/Europe-EQEC) 2019. DOI: 10.1109/CLEOE-EQEC.2019.8871550.
  7. Wang J, Hashiguchi M. Numerical evaluation on cutoff frequency of twisted waveguide with rectangular cross-section. Proceedings of the 2019 COMSOL Conference 2019.
  8. Mamontov АV, Nefedov VN, Khritkin S. Application of below-cutoff waveguides for pyrometric measurements, Meas Tech 2018; 61(7): 723-726.
  9. Duehring MB, Sigmund O, Feurer T. Design of photonic bandgap fibers by topology optimization. J Opt Soc Am B 2010; 27(1): 51-58.
  10. Olivier S, Benisty H, Weisbuch C, Smith CJM, Krauss TF, Houdré R. Coupled-mode theory and propagation losses in photonic crystal waveguides. Opt Express 2003; 11(13): 1490-1496.
  11. Hill KO, Meltz G. Fiber Bragg grating technology fundamentals and overview. J Lightw Technol 1997; 15: 1263-1276.
  12. Isapour A, Kouki AB. Vertical LTCC integrated rectangular waveguide and transitions for millimeter-wave applications. IEEE Trans Microw Theory Tech 2019; 67: 868-882.
  13. Gatti RV, Rossi R, Dionigi M. Broadband right-angle rectangular waveguide to substrate integrated waveguide transition with distributed impedance matching network. Appl Sci 2019; 9(3): 389. DOI: 10.3390/app9030389.
  14. Svetkin MI, Erokhin AI. Modeling of periodic rectangular ladder-type waveguide systems. Progress In Electromagnetics Research Symposium (PIERS) 2017: 2115-2119.
  15. Marcatili EAJ. Dielectric rectangular waveguides and directional coupler for integrated optics. Bell Syst Tech J 1969; 48(7): 2071-2102.
  16. Yariv A, Yeh P. Optical waves in crystals. New York, Chichester, Brisbane, Toronto, Singapore: John Wiley and Sons; 1984.
  17. Odarenko EN, Shmatko AA. Slow waves in a layered dielectric waveguide with a Bragg sheath [In Russian]. Radiotehnika 2015; 183: 73-76.

© 2009, IPSI RAS
151, Molodogvardeiskaya str., Samara, 443001, Russia; E-mail: ko@smr.ru ; Tel: +7 (846) 242-41-24 (Executive secretary), +7 (846) 332-56-22 (Issuing editor), Fax: +7 (846) 332-56-20