(44-4) 10 * << * >> * Russian * English * Content * All Issues

Diffraction model of a laser speckle interferometer for measuring micro-displacements of objects with scattering surface
B.A. Grizbil 1, L.A. Maksimova 2, V.P. Ryabukho 1,2

Saratov State University, 410012, Saratov, Russia, Astrakhanskaya, 83,
Institute of Precision Mechanics and Control of the Russian Academy of Sciences
410028, Saratov, Russia, Rabochaya, 24

 PDF, 1490 kB

DOI: 10.18287/2412-6179-CO-702

Pages: 568-577.

Full text of article: Russian language.

On the basis of diffraction transformations of an optical wave field a mathematical model for the formation of speckle modulated interference patterns and signals at the output of a speckle interferometer is developed, which allows us to identify their properties and quantitative parameters. Speckle interferometers based on a Michelson arrangement are considered, where objects with scattering surfaces are used instead of mirrors in the reference and object arms. Results of numerical simulation of speckle modulated interference patterns on the basis of diffraction transformations of wave fields in an interferometer are discussed. Simulated images obtained at the output of the interferometer when focusing laser beams on the scattering surfaces of the controlled and reference objects are considered. Experimental results of using a speckle interferometer with a digital matrix photodetector for measuring the temperature micro-displacements of an object with a scattering surface and a quantitative comparison of experimental data with the results obtained by a numerical experiment using a diffraction model of a speckle interferometer are presented.

interference, diffraction, speckle interferometry, laser interferometer, Michelson interferometer, interference pattern, speckle modulation, computer simulation, mathematical model.

Grizbil BA, Maksimova LA, Ryabukho VP. Diffraction model of a laser speckle interferometer for measuring micro-displacements of objects with scattering surface. Computer Optics 2020; 44(4): 568-577. DOI: 10.18287/2412-6179-CO-702.

This work was supported by the Ministry of Science and Higher Education in the framework of the work on the state order of the Institute for Problems of Precision Mechanics and Control of the Russian Academy of Sciences, no. reg. AAAA-A18-118042790042-4.


  1. Goodman JW. Speckle phenomena in optics: Theory and applications. Bellingham, Washington: SPIE Publishers; 2020.
  2. Jones R, Wykes C. Holographic and speckle interferometry. Cambridge University Press; 1983.
  3. Goodman JW. Statistical optics. New York: John Wiley & Sons Inc; 2000.
  4. Aranchuk VM. Signal-to-noise ratio in a laser Doppler speckle interferometer with a reference beam. J Opt Technol 1994; 61(10): 734-737.
  5. Ul'yanov SS, Ryabukho VP, Tuchin VV. Speckle interferometry for biotissue vibration measurement. Optical Engineering 1994; 33(3): 908-914. DOI: 10.1117/12.157694.
  6. Badalyan NP, Kiyko VI, Kislov VV, Kozlov AB. Remote laser speckle interferometry: A speckle pattern formation model. Quantum Electronics 2008; 38(5): 477-481. DOI: 10.1070/QE2008v038n05ABEH013622.
  7. Gorbatenko BB, Lyakin DV, Perepelitsyna OA, Ryabukho VP. Optical schemes and statistical properties of displacement speckle interferometer signal [In Russian]. Computer Optics 2009; 33(3): 268-280.
  8. Ryabukho VP, Klimenko IS, Golubentseva LI. Interference of laser speckle fields. Proc SPIE 1994; 2340: 513-522. DOI: 10.1117/12.195955.
  9. Meijer F, Kucharski D, Stachowska E. Determination of the phase in the center of a circular two-beam interference pattern to determine the displacement of a rough surface. Optical Engineering 2018; 57(10): 104101. DOI: 10.1117/1.OE.57.10.104101.
  10. Georges MP, Thizy C, Languy F, Zhao Y, Vandenrijt J-F. Digital holographic interferometry and speckle interferometry applied on objects with heterogeneous reflecting properties. Appl Opt 2019; 58(34): G318-G325. DOI: 10.1364/AO.58.00G318.
  11. Etchepareborda P, Vadnjal AL, Bianchetti A, Veiras FE, Federico A, Kaufmann GH. Comparative analysis of nanometric inspection methods in fringeless speckle pattern interferometry. Appl Opt 2017; 56(3): 365-374. DOI: 10.1364/AO.56.000365.
  12. Tendela LP, Galizzi GE. A novel approach for measuring nanometric displacements by correlating speckle interferograms. Opt Lasers Eng 2018; 110: 149-154. DOI: 10.1016/j.optlaseng.2018.05.023.
  13. Born M, Wolf E. Principles of optics: Electromagnetic theory of propagation, interference and diffraction of light. 7th ed. Cambridge: Cambridge University Press; 2002.
  14. Goodman JW. Introduction to Fourier optics. 3rd ed. Roberts & Company Publishers; 2005.
  15. Ifeachor EC, Jervis BW. Digital signal processing. A practical approach. 2nd ed. Prentice Hall: Pearson Education Limited; 2002.
  16. Bykov VP, Silichev OO. Laser resonators [In Russian]. Moscow: “Fizmatlit” Publisher; 2004.
  17. Levy U, Silberberg Y, Davidson N. Mathematics of vectorial Gaussian beams. Adv Opt Photonics 2019; 11(4): 828-890. DOI: 10.1364/AOP.11.000828.
  18. Zhuravlev SD, Bogachev RYu, Rogovin VI, Petrosyan AI, Shesterkin VI, Grizbil BA, Ryabukho VP, Zakharov AA. The use of laser interferometry for measuring thermal drifts of interelectrode gaps in cathode-grid nodes of a high-power pulsed TWT and their influence on electron beam macro-parameters [In Russian]. Elektronnaya tekhnika. Seriya 1: SVC-tekhnika 2018; 4(539): 45-51.
  19. Ostrovsky YI, Butusov MM, Ostrovskaya GV. Interferometry by holography. Berlin, Heidelberg: Springer-Verlag; 1980. ISBN: 978-3-662-13489-4.
  20. Hsieh H-L, Kuo P-C. Heterodyne speckle interferometry for measurement of two-dimensional displacement. Opt Express 2020; 28(1): 724-736. DOI: 10.1364/OE.382494.

© 2009, IPSI RAS
151, Molodogvardeiskaya str., Samara, 443001, Russia; E-mail: ko@smr.ru ; Tel: +7 (846) 242-41-24 (Executive secretary), +7 (846) 332-56-22 (Issuing editor), Fax: +7 (846) 332-56-20