(44-4) 20 * << * >> * Russian * English * Content * All Issues

Recognition of dislocation structure of silicon carbide epitaxial layers by а neural network
A.V. Bragin 1, D.V. Pyanzin 1, R.I. Sidorov 1, D.A. Skvortsov 1

National Research Mordovia State University, 43000, Russia, Republic of Mordovia, Saransk, Bolshevistskaya st., 68

 PDF, 1132 kB

DOI: 10.18287/2412-6179-CO-660

Pages: 653-659.

Full text of article: Russian language.

Technological features of the growth of single crystal silicon carbide inevitably create condi-tions for the formation of crystal structure defects in them. A method is proposed for recognizing and analyzing a dislocation structure of single crystal silicon carbide based on the use of optical microscopy and a direct distribution neural network. The method was tested on homoepitaxial lay-ers of 4H-polytype silicon carbide.
     Software has been developed that allows building maps of the dislocation structure distribution over the surface of single crystal silicon carbide. The software was tested on digital images of the surface of silicon carbide epitaxial layers. The accuracy of recognition of dislocation structure was 95%.
     The dislocation mapping is used in the development of process technologies for reducing their density during the growth of single crystals

defective structure, dislocations, silicon carbide, image recognition, neural network.

Bragin AV, Pyanzin DV,Sidorov RI, Skvortsov DA.Recognition of dislocation structure of silicon carbide epitaxial layers by а neural network. Сomputer Optics 2020; 44(4): 653-659. DOI: 10.18287/2412-6179-CO-660.


  1. Luchinin VV, Tairov YuM. Silicon carbide, a diamond-like material with controllable nanostructure depending properties [In Russian]. Nanoindustry 2010; 1: 36-41.
  2. Kimoto T, Cooper JA. Fundamentals of silicon carbide technology: Growth, characterization, devices and applications. Wiley-IEEE Press; 2014.
  3. Avrov DD, Tairov YuM, Lebedev AO. Polytype inclusions and polytype stability in silicon-carbide crystals. Semiconductors 2016; 50(4): 494-501.
  4. Kallinger B, Polster S, Berwian P, Friedrich J, Muller G, Danilewsky AN, Wehrhahn A, Weber A-D. Threading dislocations in n- and p-type 4H–SiC material analyzed by etching and synchrotron X-ray topography. J Cryst Growth 2011; 314(1): 21-29. DOI: 10.1016/j.jcrysgro.2010.10.145.
  5. Friedrichs P, Kimoto T, Ley L, Pensl G. Silicon carbide: Volume 1: Growth, defects, and novel applications. Weinheim: John Wiley & Sons; 2011.
  6. Chen H, Raghothamachar B, Vetter W, Dudley M, Wang Y, Skromme B. Effects of different defect types on the performance of devices fabricated on a 4H-SiC homoepitaxial layer. MRS Online Proceeding Library Archive 2006; 911. DOI: 10.1557/PROC-0911-B12-03.
  7. Logunov M, Neverov V, Mamin B, Skvortsov D, Sidorov R. Study of nanoscale inhomogeneities in silicon carbide crystals via small-angle X-ray scattering. Mater Sci Forum 2016; 858: 349-352. DOI: 10.4028/www.scientific.net/MSF.858.349.
  8. Danz R, Gretscher P. C-DIC: A new microscopy method for rational study of phase structures in incident light arrangement. Thin Solid Films 2004; 462-463: 257-262.
  9. Sangwal K. Etching of crystals: Theory, experiment and application. New York: North-Holland Physics Publishing; 1987.
  10. Haykin S. Neural networks: A comprehensive foundation. 2nd ed. Prentice-Hall; 1999.
  11. Gonzalez RC, Woods RE. Digital image processing. 2nd ed. Prentice-Hall; 2002.
  12. Soifer VA, Kupriyanov AV. Analysis and recognition of the nanoscale images: conventional approach and novel problem statement. Computer Optics 2011; 35(2): 136-144.
  13. Karpinski H, Sakwe SA, Fried M, Bänsch E, Wellmann P. Efficient image segmentation for detection of dislocations in high resolution light microscope images of SiC wafers. Mater Sci Forum 2011; 679-680: 277-281. DOI: 10.4028/www.scientific.net/MSF.679-680.277.
  14. Schmidt A, Siebert K. Design of adaptive finite element software: The finite element toolbox ALBERTA. Berlin, Heidelberg: Springer-Verlag; 2005. ISBN: 978-3-540-22842-4.
  15. Evans LC, Spruck J. Motion of level sets by mean curvature. I. J Differential Geom 1991; 33(3): 635-681. DOI: 10.4310/jdg/1214446559.
  16. Otsu N. A threshold selection method from gray-level histograms. IEEE Trans Syst Man Cybern Syst 1979; 9 (1): 62-66.

© 2009, IPSI RAS
151, Molodogvardeiskaya str., Samara, 443001, Russia; E-mail: ko@smr.ru ; Tel: +7 (846) 242-41-24 (Executive secretary), +7 (846) 332-56-22 (Issuing editor), Fax: +7 (846) 332-56-20