(44-6) 08 * << * >> * Russian * English * Content * All Issues

Modeling the input of radiation into plane linear waveguides using diffraction gratings for a new technology for the manufacture of waveguide systems
V.S. Soloviev 1, S.P. Timoshenkov 1, A.S. Timoshenkov 1, A.I. Vinogradov 1, N.M.  Kondratiev 2, N.A. Raschepkina 3

National Research University of Electronic Technology, Moscow, Russia,
Russian Quantum Center "RQC", Skolkovo, Moscow, Russia,
Samara State Technical University, Samara, Russia

 PDF, 1605 kB

DOI: 10.18287/2412-6179-CO-718

Pages: 917-922.

Full text of article: Russian language.

The numerical simulation and selection of optimal parameters of the diffraction grating for a newly developed technology for the manufacture of plane waveguide systems are performed. In contrast to the use of ready-made silicon wafers on an insulator, the new technology has been developed for the manufacture of a fully autonomous radiation input system, a coupling element and the waveguide itself. A general description of the technology of the ‘radiation input – propagation – radiation output’ system is given. Concrete fabrication parameters of the lattice height, the substrate and coating layers are found. The coupling efficiency of radiation input into the waveguide is found to be 30%.

linear waveguide, radiation input, waveguide structure, WGM resonator, diffraction grating.

Soloviev VS, Timoshenkov SP, Timoshenkov AS, Vinogradov AI, Kondratiev NM, Raschepkina NA. Modeling the input of radiation into plane linear waveguides using diffraction gratings for a new technology for the manufacture of waveguide systems. Computer Optics 2020; 44(6): 917-922. DOI: 10.18287/2412-6179-CO-718.


  1. Van Laere F, et al. Compact focusing grating couplers between optical fibers and silicon-on-insulator photonic wire waveguides. OFC/NFOEC 2007 – Conference on Optical Fiber Communication and the National Fiber Optic Engineers Conference 2007. DOI: 10.1109/OFC.2007.4348869.
  2. Bogaerts W, De Heyn P, Van Vaerenbergh T, De Vos K, Selvaraja SK, Claes T, Dumon P, Bienstman P, Van Thourhout D, Baets R. Silicon microring resonators. Laser Photon Rev 2012; 6: 47-73.
  3. Hong J, Spring AM, Qiu F, et al. A high efficiency silicon nitride waveguide grating coupler with a multilayer bottom reflector. Sci Rep 2019; 9: 12988.
  4. Kotlyar MI, Triandaphilov YaR, Kovalev AA, Soifer VA. Kotlyar MV, O’Faolain L. Photonic crystal lens for coupling two waveguides. Appl Opt 2009; 48(19): 3722-3730.
  5. Michaels A, Yablonovitch E. Inverse design of near unity efficiency perfectly vertical grating couplers. Opt Express 2018; 26(4): 4766.
  6. Waldern JD, et al. Waveguide grating device. Pat US 9,632,226 B2 of April 25, 2017.
  7. Jian J, Xu P, Chen H, et al. High-efficiency hybrid amorphous silicon grating couplers for sub-micron-sized litium niobate waveguides. Opt Express 2018; 26(23): 29651-29658.
  8. Su L, Trivedi R, et al. Fully-automated optimization of grating couplers. Opt Express 2018; 26(4): 4023-4034.
  9. Ilchenko VS, Gorodetsky ML, Yao XS, Maleki L. Microtorus: a high-finesse microcavity with whispering-gallery modes. Opt Lett 2001; 26(5): 256-258.
  10. Savchenkov AA, Matsko AB, Strekalov D, Ilchenko VS, Maleki L. Mode filtering in optical hispering gallery resonators. Electron Lett 2005; 41(8): 495-497.
  11. Lee S, Oh M, Lee J, An K. Single radial-mode lasing in a submicron-thickness spherical shell microlaser. Appl Phys Lett 2007; 90(20): 201102.
  12. Zhu D, Zhou Y, Yu X, Shum P, Luan F. Radially graded index whispering gallery mode resonator for penetration enhancement. Opt Express 2012; 20(24): 26285-26291.
  13. Armani DK, Kippenberg TJ, Spillane SM, Vahala KJ. Ultra-high-Q toroid microcavity on a chip. Nature 2003; 421(6926), 925-928.
  14. Lin N, Jiang L, Wang S, Xiao H, Lu Y, Tsai HL. Design and optimization of liquid core optical ring resonator for refractive index sensing. Appl Opt 2011; 50(20): 3615-3621.
  15. Roelkens G, Van Thourhout D, Baets R. High efficiency Silicon-on-Insulator grating coupler based on a poly-Silicon overlay. Opt Express 2006; 14(24): 11622-11630.
  16. Subramanian AZ, et al. Low-loss single-mode PECVD silicon nitride photonic wire waveguides for 532-900 nm wavelength window fabricated within a CMOS pilot line. IEEE Photon J 2013; 5(6): 2202809.
  17. Huang Y, et al. CMOS compatible monolithic multi-layer Si3N4-on-SOI platform for low-loss high performance silicon photonics dense integration. Opt Express 2014; 22(18): 21859-21865.

© 2009, IPSI RAS
151, Molodogvardeiskaya str., Samara, 443001, Russia; E-mail: ko@smr.ru ; Tel: +7 (846) 242-41-24 (Executive secretary), +7 (846) 332-56-22 (Issuing editor), Fax: +7 (846) 332-56-20