(44-6) 14 * << * >> * Russian * English * Content * All Issues

Non-contact registration of respiration by analysis of IR-THz human face images
E.E. Berlovskaya 1, O.P. Cherkasova 2,3, I.A. Ozheredov 1,3,4, T.V. Adamovich 5, E.S. Isaychev 5, S.A. Isaychev 5, A.M. Makurenkov 1, A.N. Varaksin 6, S.B. Gatilov 6, N.I. Kurenkov 6, A.M. Chernorizov 5, A.P. Shkurinov 1,3

Faculty of Physics, Lomonosov Moscow State University, Moscow, Russia,
Institute of Laser Physics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia,
Institute on Laser and Information Technologies of Russian Academy of Sciences — Branch of Federal Scientific
Research Center "Crystallography and Photonics" of Russian Academy of Sciences, Moscow region, Shatura, Russia,
Penza State University, Penza, Russia,
Faculty of Psychology, Lomonosov Moscow State University, Moscow, Russia,
Scientific Research Center for Pattern Recognition, Ltd., Moscow, Russia

 PDF, 1873 kB

DOI: 10.18287/2412-6179-CO-737

Pages: 959-967.

Full text of article: Russian language.

We propose a new approach to non-contact recording of respiratory function based on the analysis of a sequence of Infrared-terahertz images of the human face, allowing the processes that occur during breathing to be visualized. To obtain quantitative estimates of the respiratory function, two methods are proposed. The first one utilizes a probe which implements the function of spatial differentiation and provides high sensitivity, but requires an increased accuracy of positioning the probe at the nasal opening and scaling in accordance with the camera angle. The other one is a histogram method for obtaining quantitative estimates of the external respiratory function, which is scale invariant and does not require precise positioning, but has a lower sensitivity compared to the first one. The methods proposed have made it possible to remotely evaluate the respiratory rate, which correlates well with the data obtained by a contact method of respiratory function registration.

infrared imaging, terahertz imaging, image analysis, instrumental non-contact diagnostics, breathing function.

Berlovskaya EE, Cherkasova OP, Ozheredov IA, Adamovich TV, Isaychev ES, Isaychev SA, Makurenkov AM, Varaksin AN, Gatilov SB, Kurenkov BI, Chernorizov AM & Shkurinov AP. Non-contact registration of respiration by analysis of IR-THz human face images. Computer Optics 2020; 44(6): 959-967. DOI: 10.18287/2412-6179-CO-737.

This work was partly funded by the Russian Foundation for Basic Research (Project No. 17-29-02487) by the Ministry of Education and Science of the Russian Federation (project 0748-2020-0012), and by the RF Ministry of Science within the State assignment to the FSRC “Crystallography and Photonics” RAS, and was conducted using the equipment purchased under the “Development Program of Lomonosov Moscow State University until 2020” and supported by the Interdisciplinary Scientific and Educational School of Moscow University "Photonic and Quantum Technologies. Digital Medicine".


  1. Sizov FF. Photoelectronics for vision systems in “invisible” areas [In Russian]. Kiev: “Akademperiodika” Publisher; 2008.
  2. Lee Y-S. Principles of terahertz science and technology. Springer-Verlag; 2009. DOI: 10.1007/978-0-387-09540-0.
  3. Angeluts AA, Balakin AV, Evdokimov MG, Esaulkov MN, Nazarov MM, Ozheredov IA, Sapozhnikov DA, Solyankin PM, Cherkasova OP, Shkurinov AP. Characteristic responses of biological and nanoscale systems in the terahertz frequency range. Quantum Electronics 2014; 44(7): 614-632. doi:10.1070/QE2014v044n07ABEH015565.
  4. Fitzgerald AJ, Berry E, Zinovev NN, Walker GC, Smith MA, Chamberlain JM. An introduction to medical imaging with coherent terahertz frequency radiation. Phys Med Biol 2002; 47(7): R67-R84.
  5. Mattsson M-O, Zeni O, Simkó M. Is there a biological basis for therapeutic applications of millimetre waves and THz waves? J Infrared Milli Terahz Waves 2018; 39(9): 863-878. DOI: 10.1007/s10762-018-0483-5.
  6. Fedorov VI, Serdyukov DS, Cherkasova OP, Popova SS, Nemova EF. The influence of terahertz radiation on the cell’s genetic apparatus. J Opt Technol 2017; 84(8); 509-514. DOI: 10.1364/JOT.84.000509.
  7. Ilina I, Sitnikov DS, Agranat MB. State-of-the-art of studies of the effect of terahertz radiation on living biological systems. High Temp 2018; 56(5): 789-810. DOI: 10.1134/S0018151X18050127.
  8. Romanenko S, Begley R, Harvey AR, Hool L, Wallace VP. The interaction between electromagnetic fields at megahertz, gigahertz and terahertz frequencies with cells, tissues and organisms: risks and potential. J R Soc Interface 2017; 14(137): 20170585. DOI: 10.1098/rsif.2017.0585.
  9. Oda N, Lee A, Ishi T, Hosako I, Hu Q. Proposal for real-time terahertz imaging system, with palm-size terahertz camera and compact quantum cascade laser. Proc SPIE 2012; 8363: 83630A. DOI: 10.1117/12.917682.
  10. Berlovskaya EE, Cherkasova OP, Ozheredov IA, Adamovich TV, Isaychev ES, Isaychev SA, Makurenkov AM, Varaksin AN, Gatilov SB, Kurenkov BI, Chernorizov AM, Shkurinov AP. New approach to terahertz diagnostics of human psychoemotional state. Quant Electron 2019; 49(1): 70-77. DOI: 10.1070/QEL16906.
  11. Berlovskaya EE, Cherkasova OP, Ozheredov IA, Nikolaev D, Adamovich TV, Isaychev ES, Isaychev SA, Makurenkov AM, Varaksin AN, Gatilov SB, Kurenkov BI, Chernorizov AM, Shkurinov AP. Evaluation of the psychoemotional human state via terahertz image of the face. 4th International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz) 2019: 1-2. DOI: 10.1109/IRMMW-THz.2019.8873721A.
  12. Kosonogov V, De Zorzi L, Honoré J, Martínez-Velázquez ES, Nandrino J-L, Martinez-Selva JM, Sequeira H. Facial thermal variations: A new marker of emotional arousal. PLoS ONE 2017; 12(9): e0183592. DOI: 10.1371/journal.pone.0183592.
  13. Bradley MM, Miccoli L, Escrig MA, Lang PJ. The pupil as a measure of emotional arousal and autonomic activation. Psychophysiology 2008; 45(4): 602-607. DOI: 10.1111/j.1469-8986.2008.00654.x.
  14. Berlovskaya EE, Isaуchev SA, Chernorizov AM, Sinko AS, Ozheredov IA, Adamovich TV, Isaуchev ES, Cherkasova OP, Makurenkov AM, Shkurinov AP, Varaksin AN, Gatilov SB, Kurenkov NI, Manaenkov AE. Diagnostics of human psychoemotional states by combining psychological and psychophysiological methods with measurements the infrared and THz radiation from face areas. Psychology in Russia 2020; 13(2): 64-83. DOI: 10.11621/pir.2020.0205.
  15. Chernorizov AM, Isaychev SA, Zinchenko YuP, Galatenko VV, Znamenskaya IA, Zakharov PN, Khakhalin AV, Gradoboeva ON. Psychophysiological methods for the diagnostics of human functional states: New approaches and perspectives. Psychology in Russia 2016; 9(4): 23-36. DOI: 10.11621/pir.2016.0403.
  16. Lindemann L, Leiacker R, Rettinger G, Keck T. Nasal mucosal temperature during respiration. Clin Otolaryngol 2002; 27: 135-139.
  17. Rauhala E, Virkkala J, Himanen S-L. Periodic limb movement screening as an additional feature of Emfit sensor in sleep-disordered breathing studies. J Neurosci Methods 2009; 178(1): 157-161.
  18. Al-Salaymeh A, Jovanović J, Durst F. Bi-directional flow sensor with a wide dynamic range for medical applications. Med Eng Phys 2008; 26(8): 623-637.
  19. Kobylianskii J, Murray A, Brace D, Goligher E, Fan E. Electrical impedance tomography in adult patients undergoing mechanical ventilation: A systematic review. J Crit Care 2016; 35: 33-50. DOI: 10.1016/j.jcrc.2016.04.028M.
  20. Morillo DS, Ojeda JLR, Foix LFC, Jiménez AL. An accelerometer-based device for sleep apnea screening. IEEE Trans Inf Technol Biomed 2010; 14(2): 491-499.
  21. Tarakanov SA, Kuznetcov VI, Kuznetcov AO. Long-term monitoring of human respiratory activity [In Russian]. Engineering Journal of Don 2017; 4(27). Source: <https://cyberleninka.ru/article/n/dlitelnyy-monitoring-dyhaniya-cheloveka>.
  22. Khankov SI, Kormilitsin AY, Skorubskiy VI. The method for measurement and calculation of breath characteristics [In Russian]. Sci Tech J Inf Technol Mech Opt 2013; 3(85): 118-121.
  23. Pavlidis I, Dowdall J, Sun N, Puri C, Fei J, Garbey M. Interacting with human physiology. Comput Vis Image Underst 2007: 108: 150-170.
  24. Cardone D, Merla A. New frontiers for applications of thermal infrared imaging devices: Computational psychopshysiology in the neurosciences. Sensors 2017; 17: 1042. DOI: 10.3390/s17051042.
  25. Fei J, Zhu Z, Pavlidis I. Imaging breathing rate in the CO2 absorption band. IEEE Engineering in Medicine and Biology 27th Annual Conference 2005: 700-705. DOI: 10.1109/IEMBS.2005.1616510.
  26. Terahertz Imager. 2019. Source: <http://www.nec.com/en/global/prod/terahertz/pdf/NECTHz0831C.pdf>.
  27. NEC. 2014. Source: <https://www.nec.com/en/press/201411/images/1101-01-01.pdf>.
  28. AlZubaidi AK, Ethawi Y, Schmölzer GM, Sherif S, Narvey M, Seshia M. Review of biomedical applications of contactless imaging of neonates using infrared thermography and beyond. Methods and Protocols 2018; 1: 39. DOI: 10.3390/mps1040039.
  29. Znamenskaya I, Koroteeva E, Isaychev S, Chernorizov A. Thermography-based remote detection of psycho-emotional states. Proc 14th Quantitative InfraRed Thermography Conference 2018: 51-56.
  30. Varaksin AN, Gatilov SB, Ivanov AV, Kurenkov NI, Lapinin SYu. Organisation of image spatial filtration core and device to this end [In Russian], Pat RF of Invent N 2552195 C1 of June 10, 2015, Russian Bull of Inventions N16, 2015.

© 2009, IPSI RAS
151, Molodogvardeiskaya str., Samara, 443001, Russia; E-mail: ko@smr.ru ; Tel: +7 (846) 242-41-24 (Executive secretary), +7 (846) 332-56-22 (Issuing editor), Fax: +7 (846) 332-56-20