(45-1) 02 * << * >> * Russian * English * Content * All Issues

Linear to circular polarization conversion in the sharp focus of an optical vortex
A.G. Nalimov 1,2, S.S. Stafeev 1,2

IPSI RAS – Branch of the FSRC "Crystallography and Photonics" RAS,
443001, Samara, Russia, Molodogvardeyskaya 151,
Samara National Research University, 443086, Samara, Russia, Moskovskoye Shosse 34

 PDF, 1205 kB

DOI: 10.18287/2412-6179-CO-778

Pages: 13-18.

Full text of article: Russian language.

We have shown that when sharply focusing a linearly polarized optical vortex with topological charge 2, in the near-axis region of the focal plane, not only does a reverse energy flow (the negative on-axis projection of the Poynting vector) occur, but also the right-handed circular polariza-tion of light. Moreover, due to spin-orbital angular momentum conversion, the on-axis polarization vector and the transverse energy flow rotate around the optical axis in the same direction (counter-clockwise). If an absorbing spherical microparticle is put in the focus on the optical axis, it will rotate around the axis and around its center of mass counterclockwise. Numerical simulation results confirms the theoretical predictions.

polarization conversion, optical torque, optical tweezers, Maxwell stress tensor, rotation.

Nalimov AG, Stafeev SS. Linear to circular polarization conversion in the sharp focus of an optical vortex. Computer Optics 2021; 45(1): 13-18. DOI: 10.18287/2412-6179-CO-778.

The work was partly funded by the Russian Foundation for Basic Research under grant # 18-29-20003 ("Energy flow and SAM in the focus"), the Russian Science Foundation under grant # 18-19-00595 ("Simulation"), and by the RF Ministry of Science and Higher Education within a state contract with the "Crystallography and Photonics" Research Center of the RAS ("Introduction", "Conclusion").


  1. Schwartz C, Dogariu A. Conversation of angular momentum of light in single scattering. Opt Express 2006; 14: 8425-8433.
  2. Nieminen TA, Stilgoe AB, Heckenberg NR, and Rubinsztein-Dunlop N. Angular momentum of a strongly focused Gaussian beam. J Opt A 2008; 10: 115005.
  3. Haefner D, Sukhov S, Dogariu A. Spin Hall effect of light in spherical geometry. Phys Rev Lett 2009; 102: 123903.
  4. Rodriguez-Herrera OS, Lara D, Bliokh KY, Ostrovskaya EA, Dainty C. Optical nanoprobing via spin-orbit interaction of light. Phys Rev Lett 2010; 104: 253601.
  5. Bekshaev A, Bliokh KY, Soskin M. Internal flows and energy circulation in light beams. J Opt 2011; 13: 053001.
  6. Koltyar VV, Nalimov AG, Stafeev SS. Exploiting the circular polarization of light to obtain a spiral energy flow at the subwavelength focus. J Opt Soc Am B 2019; 36: 2850-2855.
  7. Volyar AV, Shvedov VG, Fadeeva TA. Structure of a nonparaxial Gaussian beam near the focus. III. Stability, eigenmodes and vortices. Opt Spectr 2001; 91: 235-245.
  8. Torok P, Varga P, Booker GR. Electromagnetic diffraction of light focused through a planar interface between materials of mismatched refractive indices: structure of the electromagnetic field. J Opt Soc Am A 1995; 12: 2136-2144.
  9. Bomzon Z, Gu M. Space-variant geometrical phases in focused cylindrical light beams. Opt Lett 2007; 32: 3017-3019.
  10. Bliokh KY, Ostrovskaya EA, Alonso MA, Rodriguez-Herrera OG, Lara D, Dainty C. Spin-to-orbital angular momentum conversion in focusing, scattering, and imaging systems. Opt Express 2011; 19: 26132-26149.
  11. Roy B, Ghosh N, Gupta SD, Panigrahi PK, Roy S, Banerjee A. Controlled transportation of mesoscopic particles by enhanced spin-orbit interaction of light in an optical trap. Phys Rev A 2013; 87: 043823.
  12. Roy B, Ghosh N, Banerjee A, Gupta SD, Roy S. Manifestations of geometric phase and enhanced spin Hall shifts in an optical trap. New J Phys 2014; 16: 083037.
  13. Ignatovsky VS. Diffraction by a lens having arbitrary opening. Transactions of the Optical Institute in Petrograd 1919; 1: IV.
  14. Richards B, Wolf E. Electromagnetic diffraction in optical systems. II. Structure of the image field in an aplanatic system. Proc Math Phys Eng Sci 1959; 253: 358-379.
  15. Kotlyar VV, Kovalev AA, Nalimov AG. Energy density and energy flux in the focus of an optical vortex: reverse flux of light energy. Opt Lett 2018; 43(12); 2921-2924. DOI: 10.1364/OL.43.002921.
  16. Kotlyar VV, Stafeev SS, Nalimov AG. Energy backflow in the focus of a light beam with phase or polarization singularity. Phys Rev A 2019; 99(3): 033840. DOI: 10.1103/PhysRevA.99.033840.
  17. Salem MA, Bagei H. Energy flow characteristics of vector X-waves. Opt Express 2011; 19: 8526-8532.
  18. Vaveliuk P, Martinez-Matos O. Negative propagation effect in nonparaxial Airy beams. Opt Express 2012; 20: 26913-26921.
  19. Rondon-Ojeda I, Soto-Eguibar F. Properties of the Poynting vector for invariant beams: negative propagation in Weber beams. Wave Motion 2018; 78: 176-184.
  20. Novitsky AV, Novitsky DV. Negative propagation of vector Bessel beams. J Opt Soc Am A 2007; 24(9): 2844-2849.
  21. Mitri FG. Reverse propagation and negative angular momentum density flux of an optical nondiffracting nonparaxial fractional Bessel ortex beam of progressive waves. J Opt Soc Am A 2016; 33: 1661-1667.
  22. Chang S, Lee SS. Optical torque exerted on a homogeneous sphere levitated in the circularly polarized fundamental-mode laser beam. J Opt Soc Am B 1985; 2: 1853-1860.

© 2009, IPSI RAS
151, Molodogvardeiskaya str., Samara, 443001, Russia; E-mail: journal@computeroptics.ru ; Tel: +7 (846) 242-41-24 (Executive secretary), +7 (846) 332-56-22 (Issuing editor), Fax: +7 (846) 332-56-20