(45-1) 07 * << * >> * Russian * English * Content * All Issues

Dyakonov plasmon-polaritones along a hyperbolic metamaterial surface
M.V. Davidovich 1,2

Saratov National Research State University named N.G. Chernyshevsky, Saratov, Russia,
LLC Research Production Firm "ETNA PLUS", Saratov, Russia

 PDF, 982 kB

DOI: 10.18287/2412-6179-CO-673

Pages: 48-57.

Full text of article: Russian language.

We consider dissipative Dyakonov plasmon-polaritons as surface waves propagating along the plane boundary of a hyperbolic metamaterial with an arbitrary orientation of the crystallographic axis. Conditions for the existence of fast, slow, gliding flowing, forward and backward plasmon-polaritons are found. A waveguide in the form of an asymmetric layer of a hyperbolic metamaterial is also considered. An expression for the density of electromagnetic energy in such a metamaterial is given.

Dyakonov surface plasmon-polaritones, surface waves, hyperbolic metamaterial, backward waves.

Davidovich MV. Dyakonov plasmon-polaritones along a hyperbolic metamaterial surface. Computer Optics 2021; 45(1): 48-57. DOI: 10.18287/2412-6179-CO-673.

This work was supported by the Ministry of Science and Higher Education of Russia as part of the state project (project no. FSRRr-2020-0004).


  1. Dyakonov MI. New type of electromagnetic wave propagating at an interface. JETP 1988; 67(4): 714-716.
  2. Averkiev NS, Diakonov MI. Electromagnetic waves localized at the boundary of transparent anisotropic media. Optics and Spectroscopy 1990; 68(5): 653-655.
  3. Bikeev ON, Sevastianov LA. Surface electromagnetic waves at the interface of two anisotropic media [In Russian]. Discrete and Continuous Models and Applied Computational Science 2017; 25(2): 141-148. DOI: 10.22363/2312-9735-2017-25-2-141-148.
  4. Delitsyn AL. Direct and backward waves propagation in anisotropic filled waveguides [In Russian]. Memoirs of the Faculty of Physics, Lomonosov Moscow State University 2017; 4: 1740703.
  5. Moiseeva NM. The calculation of eigenvalues modes of the planar anisotropic waveguides for various angles the optical axis. Computer Optics 2013; 37(1): 13-18.
  6. Guo Y, Newman W, Cortes CL, Jacob Z. Applications of hyperbolic metamaterial substrates. Advances in OptoElectronics 2012; 2012: 452502. DOI: 10.1155/2012/452502.
  7. Poddubny А, Iorsh I, Belov P, Kivshar Yu. Hyperbolic metamaterials. Nat Photon 2013; 7(12): 948-957. DOI: 10.1038/nphoton.2013.243.
  8. Noginov M, Lapine M, Podolskiy V, Kivshar Yu. Focus issue: hyperbolic metamaterials. Opt Express 2013; 21(12): 14895-14897. DOI: 10.1364/OE.21.014895.
  9. Davidovich MV. Hyperbolic metamaterials: production, properties, applications, and prospects. Phys Usp 2019; 62(12): 1173-1208. DOI: 10.3367/UFNe.2019.08.038643.
  10. Babicheva VE, Shalaginov MY, Ishii S, Boltasseva A, Kildishev AV. Long-range plasmonic waveguides with hyperbolic cladding. Opt Express 2015; 23(24): 31109-31119. DOI: 10.1364/OE.23.031109.
  11. Lyashko EI, Maimistov AI. Linear guided waves in a hyperbolic planar waveguide. Dispersion relations. Quantum Electron 2015; 45(11): 1050-1054. DOI: 10.1070/QE2015v045n11ABEH015858.
  12. Lyashko EI, Maimistov AI. Modes of a nonlinear planar waveguide with a dielectric layer immersed in a hyperbolic medium. Quantum Electron 2017; 47(11): 1053-1063. DOI: 10.1070/QEL16483.
  13. Lyashko EI, Maimistov AI. Guided waves in asymmetric hyperbolic slab waveguides: the TM mode case. J Opt Soc Am B 2016; 33(11): 2320-2330. DOI: 10.1364/JOSAB.33.002320.
  14. Davidovich MV. Plasmon analysis and homogenization in plane layered photonic crystals and hyperbolic metamaterials. JETP 2016; 160(6): 928-941. DOI: 10.1134/S106377611611025X.
  15. Davidovich MV. Plasmons in multilayer plane-layered structures. Quantum Electron 2017; 47(6): 567-579. DOI: 10.1070/QEL16272.
  16. Nefedov IS, Valagiannopoulos CA, Hashemi SM, Nefedov EI. Total absorption in asymmetric hyperbolic media. Sci Rep 2013; 3: 2662. DOI: 10.1038/srep02662.
  17. Kozina O.N., Melnikov L.A. Optical characteristics of asymmetrical hyperbolic metamaterials [In Russian]. Izvestiya of Saratov University. New Series. Series: Physics 2019; 19(2): 122-131. DOI: 10.18500/1817-3020-2019-19-2-122-131.
  18. Ovcharenko AI, Ermakov OE, Song M, Bogdanov AA, Iorsh IV, Kivshar YS. Two-dimensional Deacon waves on a hyperbolic metasurface with anisotropic effective surface conductivity [In Russian]. Electronics and microelectronics of microwave 2015; 1: 54-57.
  19. Chern R-L, Yu Y-Z. Chiral surface waves on hyperbolic-gyromagnetic metamaterials. Opt Express 2017; 25(10): 11801-11812. DOI: 10.1364/OE.25.011801.
  20. Gao W, Fang F, Liu Y, Zhang S. Chiral surface waves supported by biaxial hyperbolic metamaterials. Light Sci Appl 2015; 4: e328. DOI: 10.1038/lsa.2015.101.
  21. Popov V, Lavrinenko AV, Novitsky A. Surface waves on multilayer hyperbolic metamaterials: Operator approach to effective medium approximation. Phys Rev B 2018; 97(12): 125428. DOI: 10.1103/PhysRevB.97.125428.
  22. Xiang Y, Guo J, Dai X, Wen S, Tang D. Engineered surface Bloch waves in graphene-based hyperbolic metamaterials. Opt Express 2014; 22(3): 3054-3062. DOI: 10.1364/OE.22.003054.
  23. Guo T, Zhu L, Chen P-Y, Argyropoulos C. Tunable terahertz amplification based on photoexcited active graphene hyperbolic metamaterials [Invited]. Opt Mater Express 2014; 8(12): 3941-3952. DOI: 10.1364/OME.8.003941.
  24. Grig T, Hess O. Tunable surface waves at the interface separating different graphene-dielectric composite hyperbolic metamaterials. Opt Express 2017; 25(10): 11466-11476.
  25. Zhang L, Zhang Z, Kang C, Cheng B, Chen L, Yang X, Wang J, Li W, Wang B. Tunable bulk polaritons of graphene-based hyperbolic metamaterials. Opt Express 2014; 22(11): 14022-14030. DOI: 10.1364/OE.22.014022.
  26. Bikeev ON, Lovetsky KP, Sevastyanov AL. Eigen waves of a plane symmetric anisotropic waveguide [In Russian]. RUDN Journal of Mathematics, Information Sciences and Physics 2018; 26(2): 119-128. DOI: 10.22363/2312-9735-2018-26-2-119-128.
  27. Vainshtein LA.Electromagnetic waves [In Russian].2nd ed. Moscow: “Radio i Svyaz” Publisher; 1988.
  28. Landau LD, Lifshitz EM, Pitaevskii LP. Course of theoretical physics. Vol 8. Electrodynamics of continuous media. 2nd ed. Burlington, MA: Elsevier Butterworth-Heinemann; 1984.
  29. Zhukovsky VS, Kidwai O, Sipe JE. Physical nature of volume plasmon polaritons in hyperbolic metamaterials. Opt Express 2013; 21(12): 14982-14987. DOI: 10.1364/OE.21.014982.
  30. Davidovicch MV. Diamagnetism and paramagnetism of a metamaterial consisting of rings with a current. JETP Lett 2018; 108(5): 279-286. DOI: 10.1134/S002136401817006X.
  31. Agranovich V.M. Crystal optics of suface polaritons and the properties of surfaces. Sov Phys Usp 1975; 18(2): 99-117. DOI: 10.1070/PU1975v018n02ABEH001948.

© 2009, IPSI RAS
151, Molodogvardeiskaya str., Samara, 443001, Russia; E-mail: journal@computeroptics.ru ; Tel: +7 (846) 242-41-24 (Executive secretary), +7 (846) 332-56-22 (Issuing editor), Fax: +7 (846) 332-56-20