(45-1) 08 * << * >> * Russian * English * Content * All Issues

Optical system calibration for 3D measurements in a hydrodynamic tunnel
V.A. Knyaz 1,2, D.G. Stepanyants 1, O.Y. Tsareva 1

FSUE "State Research Institute of Aviation Systems",
125319, Russia, Moscow, St. Viktorenko, 7,
Moscow Institute of Physics and Technology,
141701, Russia, Dolgoprudnyy, Institutskiy per., 9

 PDF, 1472 kB

DOI: 10.18287/2412-6179-CO-741

Pages: 58-65.

Full text of article: Russian language.

For non-contact 3D measurements in hydrodynamic tunnels by photogrammetry methods, it is necessary to refine the standard model of image formation in the camera by taking into account an effect of refraction of rays at the boundaries of optical media, namely, at an air-glass boundary and glass-working fluid boundary. The article presents a model of image formation for shooting in a working environment that includes various optical media and methods for calibrating an optical system for 3D measurements of the coordinates of scene objects, while taking into account the real boundaries of the optical media. Experimental results on calibrating the system of three-dimensional measurements when an object image is formed by rays passing through two optical boundaries are discussed.

optical 3D measurements, calibration, refraction, ray trajectories in inhomogeneous media, three-dimensional sensing, unknown parameters estimation, accuracy.

Knyaz VA, Stepanyants DG, Tsareva OY. Optical system calibration for 3D measurements in hydrodynamic tunnel. Computer Optics 2021; 45(1): 58-65. DOI: 10.18287/2412-6179-CO-741.

The reported study was funded by the Russian Foundation for Basic Research (RFBR) under project No. 19-29-13040.


  1. Shortis M. Calibration techniques for accurate measurements by underwater camera systems. Sensors 2015; 15(12): 30810-30826. DOI: 10.3390/s151229831.
  2. Leatherdale JD, Turner DJ. Underwater photogrammetry in the North Sea. Photogramm Rec 1983; 11: 151-167. DOI: 10.1111/j.1477-9730.1983.tb00467.x.
  3. Baldwin RA. An underwater photogrammetric measurement system for structural inspection. ISPRS Archives 1984; 25(A5): 49-58.
  4. O’Byrne M, Pakrashi V, Schoefs F, Ghosh B. A comparison of image based 3D recovery methods for underwater inspections. Proc 7th European Workshop on Structural Health Monitoring 2014: 671-678.
  5. Negahdaripour S, Firoozfam P. An ROV stereovision system for ship-hull inspection. IEEE J Ocean Eng 2006; 31: 551-564. DOI: 10.1109/JOE.2005.851391.
  6. Bass GF, Rosencrantz DM. The ASHREAH – A pioneer in search of the past. In Book: Geyer RA, ed. Submersibles and their use in oceanography and ocean engineering. Ch 14. Amsterdam, The Netherlands: Elsevier North-Holland Inc; 1977: 335-350.
  7. Drap P, Seinturier J, Scaradozzi D, Gambogi P, Long L, Gauch F. Photogrammetry for virtual exploration of underwater archaeological sites. ISPRS Archives 2007; XXXVI-5/C53.
  8. Moore EJ. Underwater photogrammetry. Photogramm Rec 1976; 8: 748-763. DOI: 10.1111/j.1477-9730.1976.tb00852.x.
  9. Bianco G, Gallo A, Bruno F, Muzzupappa M. A comparison between active and passive techniques for underwater 3D applications. ISPRS Archives 2011; XXXVIII-5/W16: 357-363. DOI: 10.5194/isprsarchives-XXXVIII-5-W16-357-2011.
  10. Newton I. Underwater photogrammetry. In Book: Karara HM, ed. Non-topographic photogrammetry. Bethesda, MD, USA: American Society for Photogrammetry and Remote Sensing; 1989: 147-176.
  11. Doucette JS, Harvey ES, Shortis MR. Stereo-video observation of nearshore bedforms on a low energy beach. Mar Geol 2002; 189: 289-305. DOI: 10.1016/S0025-3227(02)00477-2.
  12. Gruen A, Beyer HA. System calibration through self-calibration. In Book: Gruen A, Huang TS, eds. Calibration and orientation of cameras in computer vision. Berlin, Heidelberg: Springer; 2001. DOI: 10.1007/978-3-662-04567- 1_7.
  13. Vo MN, Wang Z, Luu L, Ma J. Advanced geometric camera calibration for machine vision. Opt Eng 2011; 50(11): 110503. DOI: 10.1117/1.3647521.
  14. Engström P, Larsson H, Rydell J. Geometric calibration of thermal cameras. Proc SPIE 2013; 8897: 88970C. DOI: 10.1117/12.2030952.
  15. Knyaz VA, Moshkantsev PV. Joint geometric calibration of color and thermal cameras for synchronized multimodal dataset creating. Int Arch Photogramm Remote Sens Spatial Inf Sci 2019; XLII-2/W18: 79-84. DOI: 10.5194/isprs-archives-XLII-2-W18-79-2019, 2019.
  16. Raffel M, Willert ChE, Scarano F, et al. Stereoscopic PIV. In Book: Particle image velocimetry: A practical guide. — Cham: Springer International Publishing; 2018: 285-307. DOI: 10.1007/978-3-319-68852-7_8.
  17. Menna F, Nocerino E, Fassi F, Remondino F. Geometric and optic characterization of a hemispherical dome port for underwater photogrammetry. Sensors 2016; 16(1): 48. DOI: 10.3390/s16010048.
  18. Sedlazeck A, Koch R. Perspective and non- perspective camera models in underwater imaging – Overview and error analysis. In Book: Dellaert F, Frahm J-M, Pollefeys M, et al, eds. Outdoor and large-scale real-world scene analysis. Berlin, Heidelberg: Springer; 2012: 212-242. DOI: 10.1007/978-3-642-34091-8_10.
  19. Chadebecq F, Vasconcelos F, Lacher R, et al. Refractive two-view reconstruction for underwater 3D vision. Int J Comput Vis 2019; 128: 1101-1117. DOI: 10.1007/s11263-019-01218-9.
  20. Telem G, Filin S. Photogrammetric modeling of underwater environments. ISPRS J Photogramm Remote Sens 2010; 65(5): 433-444. DOI: 10.1016/j.isprsjprs.2010.05.004.
  21. Bräuer-Burchardt Ch, Kühmstedt P, Notni G. Combination of air- and water-calibration for a fringe projection based underwater 3D-scanner. In Book: Azzopardi G, Petkov N, eds. Computer analysis of images and patterns. Cham: Springer International Publishing; 2015: 49-60. DOI: 10.1007/978-3-319-23117-4_5.
  22. Cooper MAR, Robson S. Theory of close-range photogrammetry. In Book: Close range photogrammetry and machine vision. Caithness, Scotland: Whittles Publishing; 2005: 9-51.
  23. Knyaz VA. Scalable photogrammetric motion capture system "Mosca": Development and application. ISPRS J Photogramm Remote Sens 2015; XL-5/W6: 43-49. DOI: 10.5194/isprsarchives-XL-5-W6-43-2015.
  24. Fryer JC. Camera calibration. In Book: Close range photogrammetry and machine vision. Caithness, Scotland: Whittles Publishing; 2005: 156-179.
  25. Knyaz VA. Automated calibration technique for photogrammetric system based on a multimedia projector and a CCD camera. ISPRS J Photogramm Remote Sens 2006; XXXVI-5. Source: <https://www.isprs.org/proceedings/XXXVI/part5/paper/1230_Dresden06.pdf>.

© 2009, IPSI RAS
151, Molodogvardeiskaya str., Samara, 443001, Russia; E-mail: journal@computeroptics.ru ; Tel: +7 (846) 242-41-24 (Executive secretary), +7 (846) 332-56-22 (Issuing editor), Fax: +7 (846) 332-56-20