(45-4) 08 * << * >> * Russian * English * Content * All Issues

Numerical study using finite element method for the thermal response of fiber specklegram sensors with changes in the length of the sensing zone
J.D. Arango 1, Y.A. Vélez 1, V.H. Aristizabal 2, F.J. Vélez 2, J.A. Gómez 3, J.C. Quijano 3, J. Herrera-Ramirez 1

Facultad de Ingenierías, Instituto Tecnológico Metropolitano, Medellín, Colombia,
Facultad de Ingeniería, Universidad Cooperativa de Colombia, Medellín, Colombia,
Grupo de investigación de Física Básica y Aplicada, Politécnico Colombiano Jaime Isaza Cadavid, Medellín, Colombia

 PDF, 1083 kB

DOI: 10.18287/2412-6179-CO-852

Pages: 534-540.

Full text of article:English.

The response of fiber specklegram sensors (FSSs) is given as function of variations in the intensity distribution of the modal interference pattern or speckle pattern induced by external disturbances. In the present work, the behavior of a FSS sensing scheme under thermal perturbations is studied by means of computational simulations of the speckle patterns. These simulations are generated by applying the finite element method (FEM) to the modal interference in optical fibers as a function of the thermal disturbance and the length of the sensing zone. A correlation analysis is performed on the images generated in the simulations to evaluate the dependence between the changes in the speckle pattern grains and the intensity of the applied disturbance. The numerical simulation shows how the building characteristic of the length of sensing zone, combined with image processing, can be manipulated to control the metrological performance of the sensors.

fiber optics sensors, computational electromagnetic methods, numerical approximation and analysis, optical sensing and sensors, speckle interferometry.

Arango JD, Vélez YA, Aristizabal VH, Vélez FJ, Gómez JA, Quijano JC, Herrera-Ramirez J. Numerical study using finite element method for the thermal response of fiber specklegram sensors with changes in the length of the sensing zone. Computer Optics 2021; 45(4): 534-540. DOI: 10.18287/2412-6179-CO-852.

This work was partially funded by the Instituto Tecnológico Metropolitano (grant P20215), the Politécnico Jaime Isaza Cadavid (grant 2020/00132/001) and the Universidad Cooperativa de Colombia (grant INV2903). Y. A. Vélez also thanks the support given to her by the Instituto Tecnológico Metropolitano through its program of young researchers.


  1. Campanella CE, Cuccovillo A, Campanella C, Yurt A, Passaro VMN. Fibre Bragg Grating based strain sensors: Review of technology and applications. Sensors 2018; 18(9): 3115. DOI: 10.3390/s18093115.
  2. Gómez JA, Salazar Á. Self-correlation fiber specklegram sensor using volume characteristics of speckle patterns. Opt Lasers Eng 2012; 50(5): 812-815. DOI: 10.1016/j.optlaseng.2012.01.002.
  3. Goodman JW. Speckle phenomena in optics: Theory and applications. 2nd ed. Bellingham: SPIE Press; 2020.
  4. Leal-Junior AG, Frizera A, Marques C, Pontes MJ. Optical fiber specklegram sensors for mechanical measurements: A review. IEEE Sens J 2020; 20(2): 569-576. DOI: 10.1109/JSEN.2019.2944906.
  5. Wu S, Yin S, Yu FTS. Sensing with fiber specklegrams. Appl Opt 1991; 30(31): 4468-4470. DOI: 10.1364/AO.30.004468.
  6. Efendioglu HS. A review of fiber-optic modal modulated sensors: Specklegram and modal power distribution sensing. IEEE Sens J 2017; 17(7): 2055-2064. DOI: 10.1109/JSEN.2017.2658683.
  7. Cabral TD, Fujiwara E, Warren-Smith SC, Ebendorff-Heidepriem H, Cordeiro CMB. Multimode exposed core fiber specklegram sensor. Opt Lett 2020; 45(12): 3212-3215. DOI: 10.1364/ol.391812.
  8. Qian S, Xu Y, Zhong L, Su L. Investigation on sensitivity enhancement for optical fiber speckle sensors. Opt Express 2016; 24(10): 10829-10840. DOI: 10.1364/oe.24.010829.
  9. Wu P, Zhu S, Hong M, Chen F, Liu H. Specklegram temperature sensor based on femtosecond laser inscribed depressed cladding waveguides in Nd:YAG crystal. Opt Laser Technol 2019; 113: 11-14. DOI: 10.1016/j.optlastec.2018.12.004.
  10. Castaño LF, Gutiérrez LC, Quijano JC, Herrera-Ramírez JA, Hoyos A, Vélez FJ, et al. Temperature measurement by means of fiber specklegram sensors (FSS). Opt Pura y Apl 2018; 51(3): 1-7. DOI: 10.7149/OPA.51.3.50306.
  11. Feng F, Chen W, Chen D, Lin W, Chen SC. In-situ ultrasensitive label-free DNA hybridization detection using optical fiber specklegram. Sensors Actuators, B Chem 2018; 272: 160-165. DOI: 10.1016/j.snb.2018.05.099.
  12. Gåsvik KJ. Optical metrology. Chichester: John Wiley and Sons Ltd; 2002. ISBN: 0-470-84300-4.
  13. Hoyos A, Gómez ND, Gómez JA. Fiber specklegram sensors (FSS) for measuring high frequency mechanical perturbations. Proc SPIE 2013; 8785: 8785BH. DOI: 10.1117/12.2026075.
  14. Fujiwara E, Da Silva LE, Cabral TD, De Freitas HE, Wu YT, Cordeiro CMDB. Optical fiber specklegram chemical sensor based on a concatenated multimode fiber structure. J Light Technol 2019; 37(19): 5041-5047. DOI: 10.1109/JLT.2019.2927332.
  15. Aristizabal VH, Hoyos A, Rueda E, Gomez ND, Gomez JA. Effect of wavelength on metrological characteristics of non-holographic fiber specklegram sensor. Photonic Sensors 2015; 5(1): 1-5. DOI: 10.1007/s13320-014-0210-3.
  16. Zhang Z, Ansari F. Fiber-optic laser speckle-intensity crack sensor for embedment in concrete. Sensors Actuators A Phys 2006; 126(1): 107-111. DOI: 10.1016/j.sna.2005.10.002.
  17. Darío Gómez N, Gómez JA. Effects of the speckle size on non-holographic fiber specklegram sensors. Opt Lasers Eng 2013; 51(11): 1291-1295. DOI: 10.1016/j.optlaseng.2013.05.007.
  18. Rodriguez-Cobo L, Lomer M, Lopez-Higuera JM. Fiber specklegram sensors sensitivities at high temperatures. Proc SPIE 2015; 9634: 96347J. DOI: 10.1117/12.2194288.
  19. Wang JJ, Yan SC, Ruan YP, Xu F, Lu YQ. Fiber-optic point-based sensor using specklegram measurement. Sensors 2017; 17(10): 2429. DOI: 10.3390/s17102429.
  20. Fujiwara E, Ri Y, Wu YT, Fujimoto H, Suzuki CK. Evaluation of image matching techniques for optical fiber specklegram sensor analysis. Appl Opt 2018; 57(33): 9845-9854. DOI: 10.1364/ao.57.009845.
  21. Gubarev F, Li L, Klenovskii M, Glotov A. Speckle pattern processing by digital image correlation. MATEC Web Conf 2016; 48: 04003. DOI: 10.1051/matecconf/20164804003.
  22. Liu Y, Li G, Qin Q, Tan Z, Wang M, Yan F. Bending recognition based on the analysis of fiber specklegrams using deep learning. Opt Laser Technol 2020; 131: 106424. DOI: 10.1016/j.optlastec.2020.106424.
  23. Gutiérrez LC, Castaño LF, Gómez JA, Quijano JC, Herrera-Ramírez JA, Hoyos A, et al. Specklegramas de fibra óptica analizados mediante procesamiento digital de imágenes. Rev La Acad Colomb Ciencias Exactas, Físicas y Nat 2018; 42(163): 182. DOI: 10.18257/raccefyn.608.
  24. Liu Y, Qin Q, Liu H-h, Tan Z-w, Wang M-g. Investigation of an image processing method of step-index multimode fiber specklegram and its application on lateral displacement sensing. Opt Fiber Technol 2018; 46: 48-53. DOI: 10.1016/j.yofte.2018.09.007.
  25. Fujiwara E, Marques dos Santos MF, Suzuki CK. Optical fiber specklegram sensor analysis by speckle pattern division. Appl Opt 2017; 56(6): 1585-1590. DOI: 10.1364/AO.56.001585.
  26. Crammond G, Boyd SW, Dulieu-Barton JM. Speckle pattern quality assessment for digital image correlation. Opt Lasers Eng 2013; 51(12): 1368-1378. DOI: 10.1016/j.optlaseng.2013.03.014.
  27. Aristizabal VH, Vélez FJ, Torres P. Analysis of photonic crystal fibers: Scalar solution and polarization correction. Opt Express 2006; 14(24): 11848-11854. DOI: 10.1364/oe.14.011848.
  28. Arístizabal VH, Vélez FJ, Rueda E, Gómez ND, Gómez JA. Numerical modeling of fiber specklegram sensors by using finite element method (FEM). Opt Express 2016; 24(24): 27225-27238. DOI: 10.1364/oe.24.027225.
  29. Arístizabal VH, Velez FJ, Quijano JC, Gómez JA. Numerical analysis of Fiber Specklegram stress sensors. Latin America Optics and Photonics Conference 2016: LW2C.7. DOI: 10.1364/LAOP.2016.LW2C.7.
  30. Wray JH, Neu JT. Refractive index of several glasses as a function of wavelength and temperature. J Opt Soc Am 1969; 59(6): 774-776. DOI: 10.1364/JOSA.59.000774.
  31. Aristizabal VH, Velez FJ, Torres P. Numerical model and analysis of optical fibers with internal electrodes. Rev Colomb Física 2006; 38(1): 173-176.
  32. Torres P, Aristizábal VH, Andrés MV. Modeling of photonic crystal fibers from the scalar wave equation with a purely transverse linearly polarized vector potential. J Opt Soc Am B Opt Phys 2011; 28(4): 787-791. DOI: 10.1364/JOSAB.28.000787.

© 2009, IPSI RAS
151, Molodogvardeiskaya str., Samara, 443001, Russia; E-mail: journal@computeroptics.ru ; Tel: +7 (846) 242-41-24 (Executive secretary), +7 (846) 332-56-22 (Issuing editor), Fax: +7 (846) 332-56-20