(46-4) 01 * << * >> * Russian * English * Content * All Issues

Orbital angular momentum of structurally stable laser beams
V.V. Kotlyar 1,2, A.A. Kovalev 1,2

IPSI RAS – Branch of the FSRC "Crystallography and Photonics" RAS,
443001, Samara, Russia, Molodogvardeyskaya 151,
Samara National Research University, 443086, Samara, Russia, Moskovskoye Shosse 34

 PDF, 966 kB

DOI: 10.18287/2412-6179-CO-1108

Pages: 517-521.

Full text of article: Russian language.

For structurally stable laser beams whose amplitude can be represented as a finite sum of the Hermite-Gaussian functions with undefined weight coefficients, we obtain an analytical expression for the normalized orbital angular momentum (OAM) that is also expressed through finite sums of weight coefficients. It is shown that a certain choice of weight coefficients allows obtaining the maximal OAM, which is equal to the maximal index of the Hermite polynomial in the sum. In this case, the sum describes a single-ringed Laguerre-Gaussian beam with a topological charge equal to the maximal OAM and to the maximal order of the Hermite polynomial.

optical vortex, orbital angular momentum, structurally stable beam, Hermite-Gaussian beam, Laguerre-Gaussian beam.

Kotlyar VV, Kovalev AA. Orbital angular momentum of structurally stable laser beams. Computer Optics 2022; 46(4): 517-521. DOI: 10.18287/2412-6179-CO-1108.

The work was partly funded by the Russian Science Foundation grant 18-19-00595 (Section "Orbital angular momentum") and the Ministry of Science and Higher Education of the Russian Federation within the government project of the FSRC “Crystallography and Photonics” RAS (Section "Numerical modeling").


  1. Forbes A. Structured light from lasers. Las Phot Rev 2019; 13(11): 1900140. DOI: 10.1002/lpor.201900140.
  2. Wang J, Liang Y. Generation and detection of structured light: a review. Front Phys 2021; 9: 688284. DOI: 10.3389/fphy.2021.688284.
  3. Scholes S, Sroor H, Ait-Ameur K, Zhan Q, Forbes A. General design principle for structured light lasers. Opt Express 2020; 28(23): 35006. DOI: 10.1364/OE.410963.
  4. Pan J, Shen Y, Wan Z, Fu X, Zhang H, Liu Q. Index-tunable structured light beams from a laser with an intracavity astigmatic mode converter. Phys Rev Appl 2020; 14(4): 044048. DOI: 10.1103/PhysRevApplied.14.044048.
  5. Abramochkin EG, Volostnikov VG. Beam transformations and nontransformed beams. Opt Commun 1991; 83(1-2): 123-135. DOI: 10.1016/0030-4018(91)90534-K.
  6. Restuccia S, Giovannini D, Gibson G, Padgett MJ. Comparing the information capacity of Laguerre-Gaussian and Hermite-Gaussian modal set in a finite-aperture system. Opt Express 2016; 24(24): 27127-27136. DOI: 10.1364/OE.24.027127.
  7. Siviloglou GA, Broky J, Dogariu A, Christodoulides DN. Observation of accelerating Airy beams. Phys Rev Lett 2007; 99(21): 213901. DOI: 10.1103/PhysRevLett.99.213901.
  8. Zhan QW. Cylindrical vector beams: from mathematical concepts to applications. Adv Opt Photon 2009; 1(1): 1-57. DOI: 10.1364/AOP.1.000001.
  9. Chong A, Wan C, Chen J, Zhan QW. Generation of spatiotemporal optical vortices with controllable transverse orbital angular momentum. Nat Photon 2020; 14(6): 350-354. DOI: 10.1038/s41566-020-0587-z.
  10. Rego L, Dorney KM, Brooks NJ, Nguyen QL, Liao CT, Roman JS, Couch DE, Liu A, Pisanty E, Lewenstein M, Plaja L, Kapteyn HC, Murnane MM, Hernández-García C. Generation of extreme-ultraviolet beams with time-varying orbital angular momentum. Science 2019; 364(6447): eaaw9486. DOI: 10.1126/science.aaw9486.
  11. Indebetouw G. Optical vortices and their propagation. J Mod Opt 1993; 40(1): 73-87. DOI: 10.1080/09500349314550101.
  12. Abramochkin EG, Volostnikov VG. Spiral-type beams: optical and quantum aspects. Opt Commun 1996; 125(4-6): 302-323. DOI: 10.1016/0030-4018(95)00640-0.
  13. Kotlyar VV. Optical beams with an infinite number of vortices. Computer Optics 2021; 45(4): 490-496. DOI: 10.18287/2412-6179-CO-858.
  14. Volyar V, Abramochkin E, Egorov Yu, Bretsko M, Akimova Ya. Fine structure of perturbed Laguerre-Gaussian beams: Hermite-Gaussian mode spectra and topological charge. Appl. Opt. 2020; 59(25): 7680-7687. DOI: 10.1364/AO.396557.
  15. Kotlyar VV, Kovalev AA. Hermite-Gaussian modal laser beams with orbital angular momentum. J Opt Soc Am A 2014; 31(2): 274-282. DOI: 10.1364/JOSAA.31.000274.
  16. Kotlyar VV, Kovalev AA. Topological charge of asymmetric optical vortices. Optics Express 2020; 28(14): 20449-20460. DOI: 10.1364/OE.394273.
  17. Kotlyar VV, Kovalev AA, Porfirev AP. Vortex Hermite-Gaussian laser beams. Opt Lett 2015; 40(5): 701-704. DOI: 10.1364/OL.40.000701.
  18. Abramochkin EG, Volostnikov VG. Generalized Gaussian beams. J Opt A: Pure Appl Opt 2004; 6(5): S157-S161. DOI: 10.1088/1464-4258/6/5/001.

© 2009, IPSI RAS
151, Molodogvardeiskaya str., Samara, 443001, Russia; E-mail: journal@computeroptics.ru ; Tel: +7 (846) 242-41-24 (Executive secretary), +7 (846) 332-56-22 (Issuing editor), Fax: +7 (846) 332-56-20