(46-5) 01 * << * >> * Russian * English * Content * All Issues

Inhomogeneously polarized light fields: polarization singularity indices derived by analogy with the topological charge
V.V. Kotlyar 1,2, A.A. Kovalev 1,2, V.D. Zaitsev 1,2

IPSI RAS – Branch of the FSRC "Crystallography and Photonics" RAS,
443001, Samara, Russia, Molodogvardeyskaya 151;
Samara National Research University, 443086, Samara, Russia, Moskovskoye Shosse 34

 PDF, 4554 kB

DOI: 10.18287/2412-6179-CO-1126

Pages: 671-681.

Full text of article: Russian language.

In this work, we study several different vector and hybrid light fields, including those with multiple polarization singularities. We derive polarization singularity indices by adopting a well-known M.V. Berry's formula, which is commonly used to obtain the topological charge of scalar vortex light fields. It is shown that fields whose polarization state depends only on the polar angle in the beam cross section can have either polarization singularity lines outgoing from the center, or a single polarization singularity in the center of the beam cross section. If the polarization state of the field depends only on the radial variable, then such fields have no polarization singularities and their index is equal to zero. If the polarization state of a vector field depends on both polar coordinates, then such a field can have several polarization singularities at different locations in the beam cross section. We also investigate a vector field with high-order radial polarization and with a real parameter. At different values of this parameter, such a field has either several polarization singularity lines outgoing from the center, or a single singular point in the center. The polarization singularity index of such a field for different parameters can be either half-integer, or integer, or zero.

inhomogeneous polarization, polarization singularity, polarization singularity index, Poincaré-Hopf, topological charge.

Kotlyar VV, Kovalev AA, Zaitsev VD. Inhomogeneously polarized light fields: polarization singularity indices derived by analogy with the topological charge. Computer Optics 2022; 46(5): 671-681. DOI: 10.18287/2412-6179-CO-1126.

The work was funded by the Russian Science Foundation under grant # 22-22-00265 (theoretical study) and the Ministry of Science and Higher Education of the Russian Federation within the government project of the FSRC "Crystallography and Photonics" RAS (numerical simulation).


  1. Nye JE. Natural focusing and fine structure of light. 1st ed. Institute of Physics Publishing; 1999. ISBN: 978-0-7503-0610-2.
  2. Freund I. Poincaré vortices. Opt Lett 2001; 26(24): 1996-1998. DOI: 10.1364/OL.26.001996.
  3. Freund I. Polarization singularity indices in Gaussian laser beams. Opt Commun 2002; 201(4-6): 251-270. DOI: 10.1016/S0030-4018(01)01725-4.
  4. Freund I, Mokhun AI, Soskin MS, Angelsky OV, Mokhun II. Stokes singularity relations. Opt Lett 2002; 27(7): 545-547. DOI: 10.1364/OL.27.000545.
  5. Vyas S, Kozawa Y, Sato S. Polarization singularities in superposition of vector beams. Opt Express 2013; 21(7): 8972-8986. DOI: 10.1364/OE.21.008972.
  6. Kovalev AA, Kotlyar VV. Fresnel and Fraunhofer diffraction of a Gaussian beam with several polarization singularities. Computer Optics 2018; 42(2): 179-189. DOI: 10.18287/2412-6179-2018-42-2-179-189.
  7. Ruchi, Senthilkumaran P, Pal SK. Phase singularities to polarization singularirities. Int J Opt 2020; 2020: 2812803. DOI: 10.1155/2020/2812803.
  8. Komal B, Deepa S, Kumar S, Senthilkumaran P. Polarization singularity index determination by using a titled lens. Appl Opt 2021; 60(12): 3266-3271. DOI: 10.1364/AO.420554.
  9. Berry MV. Optical vortices evolving from helicoidal integer and fractional phase steps. J Opt A–Pure Appl Opt 2004; 6(2): 259-268. DOI: 10.1088/1464-4258/6/2/018.
  10. Zhan Q. Cylindrical vector beams: from mathematical concepts to applications. Adv Opt Photon 2009; 1(1): 1-57. DOI: 10.1364/AOP.1.000001.
  11. Kolyar VV, Stafeev SS, Kovalev AA. Sharp focusing of a light field with polarization and phase singularities of an arbitrary order. Computer Optics 2019; 43(3): 337-346. DOI: 10.18287/2412-6179-2019-43-3-337-346.
  12. Born M, Wolf E. Principles of optics: Electromagnetic theory of propagation, interference and diffraction of light. 7th ed. Cambridge: Cambridge University Press; 1999.
  13. Kotlyar VV, Kovalev AA, Stafeev SS, Nalimov AG, Rasouli S. Tightly focusing vector beams containing V-point polarization singularities. Opt Las Tech 2022; 145: 107479. DOI: 10.1016/j.optlastec.2021.107479.
  14. Kotlyar VV, Stafeev SS, Kozlova ES, Nalimov AG. Spin-orbital conversion of a strongly focused light wave with high-order cylindrical–circular polarization. Sensors 2021; 21(19): 6424. DOI: 10.3390/s21196424.
  15. Dennis MR. Polarization singularities in paraxial vector fields: morphology and statistics. Opt Commun 2002; 213(4-6): 201-221. DOI: 10.1016/S0030-4018(02)02088-6.
  16. Berry MV. Index formulae for singular lines of polariza-tion. J Opt A–Pure Appl Opt 2004; 6(7): 675-678. DOI: 10.1088/1464-4258/6/7/003.
  17. Kotlyar VV, Stafeev SS, Nalimov AG. Sharp focusing of a hybrid vector beam with a polarization singularity. Photon-ics 2021; 8(6): 227. DOI: 10.3390/photonics8060227.
  18. Beckley AM, Brown TG, Alonso MA. Full Poincaré beams. Opt Express 2010; 18(10): 10777-10785. DOI: 10.1364/OE.18.010777.
  19. Chen S, Zhou X, Liu Y, Ling X, Luo H, Wen S. Generation of arbitrary cylindrical vector beams on the higher order Poincaré sphere. Opt Lett 2014; 39(18): 5274-5276. DOI: 10.1364/OL.39.005274.
  20. Volyar AV, Fadeeva TA. Generation of singular beams in uniaxial crystals. Optics and Spectroscopy 2003; 94: 235-244. DOI: 10.1134/1.1555184.
  21. Li T, Cao B, Zhang X, Ma X, Huang K, Lu X. Polarization transitions in the focus of radial-variant vector circular Airy beams. J Opt Soc Am A 2019; 36(4): 526-532. DOI: 10.1364/JOSAA.36.000526.
  22. Rashid M, Marago OM, Jones PH. Focusing of high order cylindrical vector beams. J Opt A–Pure Appl Opt 2009; 11(6): 065204. DOI: 10.1088/1464-4258/11/6/065204.
  23. Kotlyar VV, Stafeev SS, Kovalev AA. Reverse and toroidal flux of light fields with both phase and polarization higher-order singularities in the sharp focus area. Opt Express 2019; 27(12): 16689-16702. DOI: 10.1364/OE.27.016689

© 2009, IPSI RAS
151, Molodogvardeiskaya str., Samara, 443001, Russia; E-mail: journal@computeroptics.ru ; Tel: +7 (846) 242-41-24 (Executive secretary), +7 (846) 332-56-22 (Issuing editor), Fax: +7 (846) 332-56-20