(46-5) 07 * << * >> * Russian * English * Content * All Issues

Size effect of gold nanoparticles on optical and electrical properties of plasmonic silicon solar cell
J. Gulomov 1, R. Aliev 1, I. Gulomova 1

Andijan State University, 170316, Andijan, Uzbekistan, Universitet str. 129

 PDF, 829 kB

DOI: 10.18287/2412-6179-CO-1089

Pages: 733-740.

Full text of article: English language.

One of important tasks of the day is increasing the efficiency and decreasing the cost of the silicon solar cells. There is method of introducing of metal nanoparticles into solar cells to improve its absorption and reduce transmission as well as reflection coefficients. When metal nanoparticles are introduced into silicon solar cell, nanoplasmonic effect will occur. Nanoplasmonic effect lead to modification of light spectrum and generation of extra hot electrons. Nano-plasmonic effect strongly depends on size of nanoparticles. Therefore, in this paper, effect of gold nanoparticles size on properties of silicon solar cell has been studied by using simulation. Gold nanoparticles with sizes of 4 nm, 6 nm, 9 nm, 11 nm and 21 nm have been input into emitter region of silicon solar cell in order to use both of nanoplasmonic-electric and nanoplasmonic-optic effects for enhancing efficiency of silicon solar cell. Open circuit voltage didn't change when size of nanoparticles has been changed from 4 nm to 11 nm. It dropped by 0.017 V when size of nanoparticles was 21 nm. Short circuit current has been maximum 6.7 mA/cm at nanoparticle size of 11 nm and minimum 3.1 mA/cm at nanoparticle size of 21 nm. It has been found from obtained results that gold nanoparticle with size of 11 nm affected significantly on properties of silicon solar cell. Besides, thickness of silicon solar cell can be decreased without dropping of efficiency by introducing gold nanoparticles. Because, main part of photons is absorbed near to metal nanoparticles inputted region.

silicon, nanoplasmonics, nanoparticle, solar cell, simulation, gold.

Gulomov J, Aliev R, Gulomova I. Size effect of gold nanoparticles on optical and electrical properties of plasmonic silicon solar cell. Computer Optics 2022; 46(5): 733-740. DOI: 10.18287/2412-6179-CO-1089.

This work was supported by the Fundamental Research Project of Ministry of Innovative Development of the Republic of Uzbekistan (Project No. FZ-2020092973).


  1. Meyer AR, et al. Atomic structure of light-induced efficiency-degrading defects in boron-doped Czochralski silicon solar cells. Energy Environ Sci 2021; 14(10): 5416-5422. DOI: 10.1039/d1ee01788h.
  2. Xiang HJ, Huang B, Kan E, Wei SH, Gong XG. Towards direct-gap silicon phases by the inverse band structure design approach. Phys Rev Lett 2013; 110(11): 118702. DOI: 10.1103/PhysRevLett.110.118702.
  3. Gu YQ, Xue CR, Zheng ML. Technologies to reduce optical losses of silicon solar cells. Adv Mat Res 2014; 953-954: 91-94. DOI: 10.4028/www.scientific.net/AMR.953-954.91.
  4. Saravanan S, Dubey RS, Kalainathan S, More MA, Gautam D K. Design and optimization of ultrathin crystalline silicon solar cells using an efficient back reflector. AIP Adv 2015; 5(5): 057160. DOI: 10.1063/1.4921944.
  5. Huang X, Han S, Huang W, Liu X. Enhancing solar cell efficiency: the search for luminescent materials as spectral converters. Chem Soc Rev 2012; 42(1): 173-201. DOI: 10.1039/C2CS35288E.
  6. Lopez-Delgado R, et al. Enhanced conversion efficiency in Si solar cells employing photoluminescent down-shifting CdSe/CdS core/shell quantum dots. Sci Rep 2017; 7(1): 14104. DOI: 10.1038/s41598-017-14269-0.
  7. Trupke T, Green MA, Würfel P. Improving solar cell efficiencies by down-conversion of high-energy photons. J Appl Phys2002; 92(3): 1668. DOI: 10.1063/1.1492021.
  8. Richards BS. Enhancing the performance of silicon solar cells via the application of passive luminescence conversion layers. Sol Energy Mater Sol Cells 2006; 90(15): 2329-2337. DOI: 10.1016/j.solmat.2006.03.035.
  9. Klampaftis E, Ross D, McIntosh KR, Richards BS. Enhancing the performance of solar cells via luminescent down-shifting of the incident spectrum: A review. Sol Energy Mater Sol Cells 2009; 93(8): 1182-1194. DOI: 10.1016/j.solmat.2009.02.020.
  10. van Sark WGJHM, de Wild J, Rath JK, Meijerink A, Schropp REI. Upconversion in solar cells. Nanoscale Res Lett 2013; 8(1): 81. DOI: 10.1186/1556-276X-8-81.
  11. Kumaragurubaran B, Anandhi S. Reduction of reflection losses in solar cell using Anti Reflective coating. 2014 Int Conf on Computation of Power, Energy, Information and Communication (ICCPEIC 2014) 2014: 155-157. DOI: 10.1109/ICCPEIC.2014.6915357.
  12. Kim J. Optimization of SiNx layer for solar cell using computational method. Curr Appl Phys 2011; 11(1): S39-S42. DOI: 10.1016/j.cap.2010.11.048.
  13. Glunz SW, Feldmann F. SiO2 surface passivation layers – a key technology for silicon solar cells. Sol Energy Mater Sol Cells 2018; 185: 260-269. DOI: 10.1016/j.solmat.2018.04.029.
  14. Lien SY , Wuu DS, Yeh WC, Liu JC. Tri-layer antireflection coatings (SiO2/SiO2–TiO2/TiO2) for silicon solar cells using a sol–gel technique. Sol Energy Mater Sol Cells 2006; 90(16): 2710-2719. DOI: 10.1016/j.solmat.2006.04.001.
  15. Gulomov J, Aliev R. Analyzing periodical textured silicon solar cells by the TCAD modeling. Sci Tech J Inf Technol Mech Opt 2021; 21(5): 626-632. DOI: 10.17586/2226-1494-2021-21-5-626-632.
  16. Han SE, Chen G. Optical absorption enhancement in silicon nanohole arrays for solar photovoltaics. Nano Lett 2010; 10(3): 1012-1015. DOI: 10.1021/NL904187M.
  17. Al-Ashouri A, et al. Monolithic perovskite/silicon tandem solar cell with >29% efficiency by enhanced hole extraction. Science 1979; 370(6522): 1300-1309. DOI: 10.1126/science.abd4016.
  18. Khokhar MQ, et al. High-efficiency hybrid solar cell with a nano-crystalline silicon oxide layer as an electron-selective contact. Energy Convers Manag 2022; 252: 115033. DOI: 10.1016/j.enconman.2021.115033.
  19. Kadhum HA, Salih WM, Rheima AM. Improved PSi/c-Si and Ga/PSi/c-Si nanostructures dependent solar cell efficiency. Appl Phys A 2020; 126(10): 802. DOI: 10.1007/s00339-020-03985-6.
  20. Yalamanchili S, Lewis NS, Atwater HA. Role of doping dependent radiative and non-radiative recombination in determining the limiting efficiencies of silicon solar cells. 2018 IEEE 7th World Conf on Photovoltaic Energy Conversion, WCPEC 2018 – A Joint Conf of 45th IEEE PVSC, 28th PVSEC and 34th EU PVSEC 2018: 3223-3226. DOI: 10.1109/PVSC.2018.8547758.
  21. Pang SK, Smith AW, Rohatgi A. Effect of trap location and trap-assisted auger recombination on silicon solar cell performance. IEEE Trans Electron Devices 1995; 42(4): 662-668. DOI: 10.1109/16.372065.
  22. Gogolin R, Harder NP. Trapping behavior of Shockley-Read-Hall recombination centers in silicon solar cells. J Appl Phys 2013; 114(6): 064504. DOI: 10.1063/1.4817910.
  23. Choy WCH. Plasmon-optical and plasmon-electrical effects for improve performances of solar cells. 2016 Progress in Electromagnetic Research Symposium (PIERS) 2016: 1686-1686. DOI: 10.1109/PIERS.2016.7734762.
  24. Castelletto S, Boretti A. Noble metal nanoparticles in thin film solar cells. Nanosci Nanotechnol Lett 2013; 5(1): 36-40. DOI: 10.1166/NNL.2013.1396.
  25. Gulomov J, et al. Studying the effect of light incidence angle on photoelectric parameters of solar cells by simulation. Int J Renew Energy Dev 2021; 10(4): 731-736. DOI: 10.14710/ijred.2021.36277.
  26. Zhang JJ, Qu ZG, Zhang JF, Maharjan A. A three-dimensional numerical study of coupled photothermal and photoelectrical processes for plasmonic solar cells with nanoparticles. Renew Energy 2021; 165: 278-287. DOI: 10.1016/j.renene.2020.11.010.
  27. Eremin YA, Lopushenko VV. Numerical analysis of the functional properties of the 3d resonator of a plasmon nanolaser with regard to nonlocality and prism presence via the discrete sources method. Computer Optics 2021; 45(3): 331-339. DOI: 10.18287/2412-6179-CO-790.
  28. Butt MA, Khonina SN, Kazanskiy NL. An array of nano-dots loaded MIM square ring resonator with enhanced sensitivity at NIR wavelength range. Optik 2020; 202: 163655. DOI: 10.1016/j.ijleo.2019.163655.
  29. Abduvohidov MK, Aliev R, Gulomov J. A study of the influence of the base thickness on photoelectric parameters of silicon solar cells with the new TCAD algorithms. Scientific and Technical Journal of Information Technologies, Mechanics and Optics 2021; 21(5): 774-784. doi: 10.17586/2226-1494-2021-21-5-774-784.
  30. Yakubovsky DI, et al. Ultrathin and ultrasmooth gold films on monolayer MoS2. Adv Mater Interfaces 2019; 6(13): 1900196. DOI: 10.1002/ADMI.201900196.
  31. Rosenblatt G, Simkhovich B, Bartal G, Orenstein M. Nonmodal plasmonics: Controlling the forced optical response of nanostructures. Phys Rev X 2020; 10(1): 011071. DOI: 10.1103/PhysRevX.10.011071.
  32. Khoa NT, Kim SW, Yoo DH, Kim EJ, Hahn SH. Size-dependent work function and catalytic performance of gold nanoparticles decorated graphene oxide sheets. Appl Catal A-Gen 2014; 469: 159-164. DOI: 10.1016/j.apcata.2013.08.046.
  33. Devi LB, et al. A numerical simulation and modeling of poisson equation for solar cell in 2 dimensions. IOP Conference Series: Earth and Environmental Science 2018; 173(1): 012001. DOI: 10.1088/1755-1315/173/1/012001.
  34. Stem N, Ramos CAS, Cid M. Open-circuit voltages: Theoretical and experimental optimizations of rear passivated silicon solar cells using Fz and Cz wafers. Solid State Electron 2010; 54(3): 221-225. DOI: 10.1016/j.sse.2009.09.002.
  35. Reineck P, Brick D, Mulvaney P, Bach U. Plasmonic hot electron solar cells: The effect of nanoparticle size on quantum efficiency. J Phys Chem Lett 2016; 7(20): 4137-4141. DOI: 10.1021/acs.jpclett.6b01884.
  36. Baffou G, Quidant R, Girard C. Heat generation in plasmonic nanostructures: Influence of morphology. Appl Phys Lett 2009; 94(15): 153109. DOI: 10.1063/1.3116645.
  37. Chander N, et al. Size and concentration effects of gold nanoparticles on optical and electrical properties of plasmonic dye sensitized solar cells. Solar Energy 2014; 109: 11-23. DOI: 10.1016/j.solener.2014.08.011.
  38. Wang L, Kafshgari MH, Meunier M. Optical properties and applications of plasmonic-metal nanoparticles. Adv Funct Mater 2020; 30(51): 2005400. DOI: 10.1002/adfm.202005400.
  39. Reineck P, Brick D, Mulvaney P, Bach U. Plasmonic hot electron solar cells: the effect of nanoparticle size on quantum efficiency. J Phys Chem Lett 2016; 7(20): 4137-4141. DOI: 10.1021/acs.jpclett.6b01884.
  40. Notarianni M, Vernon K, Chou A, Aljada M, Liu J, Motta N. Plasmonic effect of gold nanoparticles in organic solar cells. Solar Energy 2014; 106: 23-37. DOI: 10.1016/j.solener.2013.09.026.
  41. Pudasaini PR, Ayon AA. Nanostructured thin film silicon solar cells efficiency improvement using gold nanoparticles. Phys Status Solidi A 2012; 209(8): 1475-1480. DOI: 10.1002/pssa.201228022.
  42. Jia B, Gu M, Fahim N, Zhang Y, Shi Z, Ouyang Z. Efficiency enhancement of screen-printed multicrystalline silicon solar cells by integrating gold nanoparticles via a dip coating process. Opt Mater Express 2012; 2(2): 190-204. DOI: 10.1364/OME.2.000190.
  43. Bläsi B, Rüdiger M, Peters M, Platzer W. Electro – optical simulation of diffraction in solar cells. Opt Express 2010; 18(S4): A584-A593. DOI: 10.1364/OE.18.00A584.
  44. Day J, Senthilarasu S, Mallick TK. Improving spectral modification for applications in solar cells: A review. Renew Energy 2019; 132: 186-205. DOI: 10.1016/j.renene.2018.07.101.
  45. Lombardi A, et al. Fano interference in the optical absorption of an individual gold-silver nanodimer. Nano Lett 2016; 16(10): 6311-6316. DOI: 10.1021/acs.nanolett.6b02680.
  46. Ghosh H, et al. Light-harvesting properties of embedded tin oxide nanoparticles for partial rear contact silicon solar cells. Plasmonics 2016; 12(6): 1761-1772. DOI: 10.1007/S11468-016-0443-7.
  47. Hossain MK, Mukhaimer AW, Drmosh QA. Spectral absorption depth profile: A step forward to plasmonic solar cell design. J Electron Mater 2016; 45(11): 5695-5702. DOI: 10.1007/S11664-016-4808-7.
  48. Atwater HA, Polman A. Plasmonics for improved photovoltaic devices. Nat Mater 2010; 9(3): 205-213. DOI: 10.1038/nmat2629.

© 2009, IPSI RAS
151, Molodogvardeiskaya str., Samara, 443001, Russia; E-mail: journal@computeroptics.ru ; Tel: +7 (846) 242-41-24 (Executive secretary), +7 (846) 332-56-22 (Issuing editor), Fax: +7 (846) 332-56-20