(46-5) 16 * << * >> * Russian * English * Content * All Issues

An automatic method for subpixel registration of KMSS-M imagery based on coarse-resolution actualized reference
D.E. Plotnikov 1, P.A. Kolbudaev 1, E.A. Loupian 1

Space Research Institute of Russian Academy of Sciences, Moscow, Russia

 PDF, 1108 kB

DOI: 10.18287/2412-6179-CO-1098

Pages: 818-827.

Full text of article: Russian language.

The paper describes a method for automatic subpixel-accurate geographic referencing of imagery acquired by KMSS-M with 60 m spatial resolution, based on leveraging a coarse, reconstructed, cloud-free and daily updated MODIS surface reflectance reference image. The method is based on maximizing Pearson's correlation value when determining an optimal local displacement of the distorted image fragment by comparing with the reference image. To assess the effectiveness of the method when used over continental-scale and heterogeneous areas, three experiments were carried out providing quantitative estimates of imagery registration errors: an experiment with model datasets, an experiment to estimate the absolute registration error of MODIS reference imagery, and an experiment to estimate the registration error of geocorrected KMSS-M data. Experimental evaluation of the method based on model datasets of decameter-resolution Sentinel-2 (MSI) imagery demonstrated its robustness when used over a variety of environmental conditions over a one year-long observation period. The average georeferencing error of MODIS coarse-resolution reference was shown to be less than 20 meters in Red and Near-infrared bands. Corrected KMSS-M imagery evaluation over the Russian Grain Belt within 2020 has shown, on average, the subpixel referencing accuracy both in Red and Near-infrared bands, while the average absolute georeferencing error of the original uncorrected KMSS-M imagery was shown to be about 3 kilometers. Subpixel registration accuracy of KMSS-M imagery, corrected with MODIS-based coarse-resolution reference, opens new prospects for using multi-temporal analysis of this multispectral surface reflectance data in a variety of scientific and practical applications associated with vegetation cover satellite monitoring. The technological flexibility of the method ensures its applicability to data from other satellite systems for Earth optical remote sensing.

KMSS-M, Meteor-M-2, image georeferencing, MODIS, Sentinel-2, LOESS.

Plotnikov DE, Kolbudaev PA, Loupian EA. An automatic method for subpixel registration of KMSS-M imagery based on coarse-resolution actualized reference. Computer Optics 2022; 46(5): 818-827. DOI: 10.18287/2412-6179-CO-1098.

This work was financially supported by the RF Ministry of Science and Higher Education within a "Monitoring" research program (state reference number 122012400187-6).


  1. Pan H, Tao C, Zou Z. Precise georeferencing using the rigorous sensor model and rational function model for Zi-Yuan-3 strip scenes with minimum control. ISPRS J Pho-togramm Remote Sens 2016; 119: 259-266. DOI: 10.1016/j.isprsjprs.2016.06.005.
  2. Hariyanto T, Kurniawan A, Pribadi CB, Al Amin R. Optimization of ground control point (gcp) and independent control point (icp) on orthorectification of high resolution satellite imagery. Int Symposium on Global Navigation Satellite System 2018 (ISGNSS 2018) 2018: 02008. DOI: 10.1051/e3sconf/20199402008.
  3. Seo JH, Jeong S, Kim KO. Smart rectification on satellite images. Proc KSRS Conf 2002; 2002.10a: 75-80.
  4. Eugenio F, Marques F, Marcello J. Pixel and sub-pixel accuracy in satellite image georeferencing using an automatic contour matching approach. Proc 2001 Int Conf on Image Processing 2001; 1: 822-825. DOI: 10.1109/ICIP.2001.959172.
  5. Müller R, Krauß T, Schneider M, Reinartz P. Automated georeferencing of optical satellite data with integrated sensor model improvement. Photogramm Eng Remote Sensing 2012; 78(1): 61-74. DOI: 10.14358/PERS.78.1.61.
  6. Leprince S, Barbot S, Ayoub F, Avouac J.-P. Automatic and precise orthorectification, coregistration, and subpixel correlation of satellite images, application to ground deformation measurements. IEEE Trans Geosci Remote Sens 2007; 45(6): 1529-1558. DOI: 10.1109/TGRS.2006.888937.
  7. Ye Z, Kang J, Yao J, Song W, Liu S, Luo X, Tong X. Robust fine registration of multisensor remote sensing images based on enhanced subpixel phase correlation. Sensors 2020; 20(15): 4338. DOI: 10.3390/s20154338.
  8. Wolfe RE, Nishihama M, Fleig AJ, Kuyper JA, Roy DP, Storey JC, Patt FS. Achieving sub-pixel geolocation accuracy in support of MODIS land science. Remote Sens Environ 2002; 83(1-2): 31-49. DOI: 10.1016/S0034-4257(02)00085-8.
  9. Lowe DG. Distinctive image features from scale-invariant keypoints. Int J Comput Vis 2004; 60: 91-110. DOI: 10.1023/B:VISI.0000029664.99615.94
  10. Alganci U, Sertel E. Automated orthorectification of VHR satellite images by SIFT-based RPC refinement. ISPRS Int J Geoinf 2018; 7: 229. DOI: 10.3390/ijgi7060229.
  11. Long T, Jiao W, He G, Zhang Z. A fast and reliable matching method for automated georeferencing of remotely-sensed imagery. Remote Sens 2016; 8(1): 56. DOI: 10.3390/rs8010056.
  12. Zhukov BS, Grishantseva LA, Kondratieva TV, Nikitin AV, Permitina LI, Polyanskiy IV. In-flight geometric calibration of KMSS-2 multispectral satellite imaging system on board Meteor-M No.2-2 satellite [In Russian]. Sovremennye Problemy Distantsionnogo Zondirovaniya Zemli iz kosmosa 2019; 16(6): 93-100. DOI: 10.21046/2070-7401-2019-16-6-93-100.
  13. Zhukov BS, Zhukov SB, Kondratieva TV, Nikitin AV. Automation of in-flight geometric calibration of multispectral satellite imaging system KMSS-M on board Meteor-M No.2 satellite [in Russian]. Sovremennye Problemy Distantsionnogo Zondirovaniya Zemli iz kosmosa 2018; 15(6): 201-212. DOI: 10.21046/2070-7401-2018-15-6-201-212.
  14. Alecu C, Chrysoulakis N, Oancea S, Stancalie G. The georeferencing errors of satellite data in remote sensing applications. Proc SPIE 2007; 6748: 67481Q. DOI: 10.1117/12.747001.
  15. Polyanskiy IV, Zhukov BS, Kondratieva TV, Prokhorova SA, Smetanin PS. Medium-resolution multispectral satellite imaging system for hygrometeorological spacecraft [In Russian]. Sovremennye Problemy Distantsionnogo Zondirovaniya Zemli iz kosmosa 2019; 16(6): 83-92. DOI: 10.21046/2070-7401-2019-16-6-83-92.
  16. Egorov VA, Bartalev SA, Kolbudaev PA, Plotnikov DE, Khvostikov SA. Land cover map of Russia derived from Proba-V satellite data [In Russian]. Sovremennye Problemy Distantsionnogo Zondirovaniya Zemli iz kosmosa 2018; 15(2): 282-286. DOI: 10.21046/2070-7401-2018-15-2-282-286.
  17. Plotnikov DE, Bartalev SA, Loupian EA, Tolpin VA. Accuracy assessment for winter crops mapping in spring-summer growing season with MODIS data [In Russian]. Sovremennye Problemy Distantsionnogo Zondirovaniya Zemli iz kosmosa 2017; 14(4); 132-148. DOI: 10.21046/2070-7401-2017-14-4-132-145.
  18. Plotnikov D, Elkina E, Dunaeva E, Khvostikov S, Loupian E, Bartalev S. Development of the method for automatic winter crops mapping by means of remote sensing aimed at crops state assessment over the republic of Crimea [in Russian]. Taurida Herald of the Agrarian Sciences 2020; 1(21), 64-83. DOI: 10.33952/2542-0720-2020-1-21-64-83.
  19. Plotnikov DE, Kolbudaev PA, Zhukov BS, Matveev AM, Bartalev SА, Egorov VA, Kashnitskii AV, Proshin AA. The collection of multispectral KMSS-M (Meteor-M No. 2) satellite data aimed at quantitative assessment of the Earth surface [In Russian]. Sovremennye Problemy Distantsionnogo Zondirovaniya Zemli iz kosmosa 2020; 17(7): 276-282. DOI: 10.21046/2070-7401-2020-17-7-276-282.
  20. Plotnikov D, Kolbudaev P, Matveev A, Loupian E, Proshin A. Daily surface reflectance reconstruction using LOWESS on the example of various satellite systems. 2022 VIII International Conference on Information Technology and Nanotechnology (ITNT-2022). 18 August 2022. DOI: 10.1109/ITNT55410.2022.9848630.
  21. Cleveland WS. Robust locally weighted regression and smoothing scatterplots. J Am Stat Assoc 1979; 74(368): 829-836.
  22. Elkina ES, Egorov VA, Plotnikov DE, Samofal EV, Bartalev SA, Patil VC, Sunil JK., Chavan VS. Developent of satellite monitoring methods for sugarcane crop condition assessment in Peninsular India. Sovremennye Problemy Distantsionnogo Zondirovaniya Zemli iz kosmosa 2019; 16(5): 159-173. DOI: 10.21046/2070-7401-2019-16-5-159-173.
  23. Kolbudaev P, Plotnikov D, Loupian E, Proshin A, Matveev A. The methods and automatic technology aimed at imagery georeferencing, cloud screening, atmospheric and radiometric correction of KMSS-M satellite data. E3S Web of Conferences 2021; 333(2021): 01006. DOI: 10.1051/e3sconf/202133301006.
  24. The European Space Agency. Sentinel online. Radiometric performance. Source: <https://sentinels.copernicus.eu/web/sentinel/technical-guides/sentinel-2-msi/performance>.
  25. Loupian EA, Proshin AA, Bourtsev MA, Balashov IV, Bartalev SA, Efremov VYu, Kashnitskiy AV, Mazurov AA, Matveev AM, Sydneva OA, Sychugov IG, Tolpin VA, Uvarov IA. IKI center for collective use of satellite data archiving, processing and analysis systems aimed at solving the problems of environmental study and monitoring. Sovremennye Problemy Distantsionnogo Zondirovaniya Zemli iz kosmosa 2015; 12(5): 263-284.

© 2009, IPSI RAS
151, Molodogvardeiskaya str., Samara, 443001, Russia; E-mail: journal@computeroptics.ru ; Tel: +7 (846) 242-41-24 (Executive secretary), +7 (846) 332-56-22 (Issuing editor), Fax: +7 (846) 332-56-20