(46-5) 18 * << * >> * Russian * English * Content * All Issues

Experimental study of a matrix method of equal-weight columns correcting ability to protect data from erasure
Е.E. Aydarkin 1, N.S. Mogilevskaya 1

Southern Federal University, I.I. Vorovich Institute of Mathematics, Mechanics and Computer Science, Rostov-on-Don

 PDF, 1122 kB

DOI: 10.18287/2412-6179-CO-1122

Pages: 840-847.

Full text of article: Russian language.

The paper investigates the ability of the equal-weight columns method to resist grouping erasures. The Gilbert model for error generation flow is adapted for the case of erasures. A simulation model of the erasure-correction channel is constructed with the possibility of choosing the type of erasure and the method of protection against erasure. With the help of this model, an experimental study of the equal-weight column method and its modifications is conducted and a detailed analysis of the results with conclusions for developers of networks and data transmission channels is carried out. An estimate of the decoding probability is constructed. A method of dealing with clustering erasures by using additional redundancy is proposed.

erasure, error-correction data transmission channel, grouped erasures, Gilbert model, equal-weight columns method.

Aydarkin EE, Mogilevskaya NS. Experimental study of a matrix method of equal-weight columns correcting ability to protect data from erasure. Computer Optics 2022; 46(5): 840-847. DOI: 10.18287/2412-6179-CO-1122.


  1. Aydarkin EE, Deundyak VM. Construction of coding matrices with equilibrium columns for using in channels with deletion [In Russian]. Telecommunications 2020; 3: 11-17.
  2. Gabidulin EM, Pilipchuk NI, Bossert M. Decoding of random network codes. Probl Inf Transm 2010; 46(4): 300-320. DOI: 10.1134/S0032946010040034.
  3. Gilbert EN. Channel throughput with error packets [In Russian]. Kiberneticheskii Sbornik 1964; 9: 109-122.
  4. Gligoroski D, Kralevska K. Families of optimal binary non-MDS erasure codes. 2014 IEEE Int Symposium on Information Theory 2014: 3150-3154. DOI: 10.1109/ISIT.2014.6875415.
  5. Koetter R, Kschischang FR. Coding for errors and erasures in random network coding. IEEE Trans Inf Theory 2008; IT-54(8): 3579-3591.
  6. Deundyak VM, Mayevskiy AE, Mogilevskaya NS. Methods of error-correcting data protection [In Russian]. Rostov-on-Don: SFEDU Publishing; 2014.
  7. Al-Shaikhi A, Ilow J. Design of packet-based block codes with shift operators. EURASIP J Wirel Commun Netw 2010; 2010: 263210. DOI: 10.1155/2010/263210.
  8. Pan VY. Matrix structure and loss-resilient encoding/decoding. Comput Math with Appl 2003; 46: 493-499. DOI: 10.1016/S0898-1221(03)90041-1.
  9. Silva D, Kschischang FR, Koetter R. A rank-metric approach to error control in random network coding. IEEE Trans Inf Theory 2008; IT-54(9): 3951-3967. DOI: 10.1109/TIT.2008.928291.
  10. Aydarkin EE, Deundyak VM. Channel-network cascade for packet and symbol erasures in binary linear network. J Comp Eng Math 2020; 7(2): 3-14. DOI: 10.14529/jcem200201.
  11. Valiska J, Hrušovský B, Marchevsky S, Pillár S. Error models simulations in transmission channels using network simulator environment. Acta Electrotechnica et Informatica 2012; 12(2): 51-58. DOI: 10.2478/v10198-012-0019-1.
  12. Maltsev GN, Dzhumkov VV. A generalized model of a discrete communication channel with grouping errors [In Russian]. Information and Control Systems 2013; 1: 27-33.
  13. Kolesnik VD. Coding in the transmission and storage of information (Algebraic theory of block codes) [In Russian]. Moscow: "Vysshaya Shkola" Publisher; 2009.
  14. Evseev GS. On the complexity of decoding linear codes [In Russian]. Probl Inf Transm 1983; 19(1): 3-8.
  15. Trullos-Cruces O. Exact decoding probability under random linear network coding. IEEE Commun Lett 2011; 15(1): 67-69. DOI: 10.1109/LCOMM.2010.110310.101480.
  16. Aydarkin EE, Mogilevskaya NS Program for modeling data transmission in channels with anti-erasure protection based on the equal-weight columns method [In Russian]. Certificate of State Registration of the Computer Program No. 2021611988 of March 2, 2021.
  17. Morelos-Zaragoza RH. The art of error correcting coding. 2nd ed. Hoboken: John Wiley and Sons Inc; 2006. ISBN: 978-0-470-01558-2.
  18. Barinov AY. Movement in channel coding: properties, structure, specifics applications. J Radio Electron 2019; 1. Source: <http://jre.cplire.ru/jre/jan19/13/text.pdf>. DOI: 10.30898/1684-1719.2019.1.13.

© 2009, IPSI RAS
151, Molodogvardeiskaya str., Samara, 443001, Russia; E-mail: journal@computeroptics.ru ; Tel: +7 (846) 242-41-24 (Executive secretary), +7 (846) 332-56-22 (Issuing editor), Fax: +7 (846) 332-56-20